Citation:
Md Moklesur Rahman, Ling Bai,
2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341.
http://doi.org/10.26464/epp2018030
2018, 2(4): 327-341. doi: 10.26464/epp2018030
Probabilistic seismic hazard assessment of Nepal using multiple seismic source models
1. | Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China |
2. | Department of Petroleum and Mining Engineering, Jessore University of Science and Technology, Jessore 7408, Bangladesh |
3. | Department of Geophysics, Stanford University, Stanford, California 94305-2215, USA |
The potential for devastating earthquakes in the Himalayan orogeny has long been recognized. The 2015 MW7.8 Gorkha, Nepal earthquake has heightened the likelihood that major earthquakes will occur along this orogenic belt in the future. Reliable seismic hazard assessment is a critical element in development of policy for seismic hazard mitigation and risk reduction. In this study, we conduct probabilistic seismic hazard assessment using three different seismogenic source models (smoothed gridded, linear, and areal sources) based on the complicated tectonics of the study area. Two sets of ground motion prediction equations are combined in a standard logic tree by taking into account the epistemic uncertainties in hazard estimation. Long-term slip rates and paleoseismic records are also incorporated in the linear source model. Peak ground acceleration and spectral acceleration at 0.2 s and 1.0 s for 2% and 10% probabilities of exceedance in 50 years are estimated. The resulting maps show significant spatial variation in seismic hazard levels. The region of the Lesser Himalaya is found to have high seismic hazard potential. Along the Main Himalayan Thrust from east to west beneath the Main Central Thrust, large earthquakes have occurred regularly in history; hazard values in this region are found to be higher than those shown on existing hazard maps. In essence, the combination of long span earthquake catalogs and multiple seismogenic source models gives improved seismic hazard constraints in Nepal.
Abrahamson, N. A., Silva, W. J., and Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthq. Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M |
Abrahamson, N., Gregor, N., and Addo, K. (2016). BC hydro ground motion prediction equations for subduction earthquakes. Earthq. Spectra, 32(1), 23–44. https://doi.org/10.1193/051712EQS188MR |
Ader, T., Avouac, J. P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., Genrich, J., Thomas, M., Chanard, K., … Flouzat, M. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. J. Geophys. Res.: Solid Earth, 117(B4), B04403. https://doi.org/10.1029/2011JB009071 |
Adhikari, L. B., Gautam, U. P., Koirala, B. P., Bhattarai, M., Kandel, T., Gupta, R. M., Timsina, C., Maharajan, N., Maharajan, K., … Bollinger, L. (2015). The aftershock sequence of the 2015 April 25 Gorkha-Nepal earthquake. Geophys. J. Int., 203(3), 2119–2124. https://doi.org/10.1093/gji/ggv412 |
Aki, K. (1965). Maximum likelihood estimate of b in the formula logN=a−bM and its confidence limits. Bull. Earthq. Res. Inst., 43(2), 237–239. |
Ambraseys, N. N., Douglas, J., Sarma, S. K., and Smit, P. M. (2005). Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the middle east: horizontal peak ground acceleration and spectral acceleration. Bull. Earthq. Eng., 3(1), 1–53. https://doi.org/10.1007/s10518-005-0183-0 |
Ambraseys, N. N., and Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophys. J. Int., 159(1), 165–206. https://doi.org/10.1111/j.1365-246X.2004.02323.x |
Atkinson, G. M., and Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull. Seismol. Soc. Am., 93(4), 1703–1729. https://doi.org/10.1785/0120020156 |
Avouac, J.-P., Meng, L. S., Wei, S. J., Wang, T., and Ampuero, J.-P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat. Geosci., 8(9), 708–711. https://doi.org/10.1038/ngeo2518 |
Bai, L., Liu, H. B., Ritsema, J., Mori, J., Zhang, T. Z., Ishikawa, Y., and Li, G. H. (2016). Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw7.8 Gorkha, Nepal, earthquake. Geophys. Res. Lett., 43(2), 637–642. https://doi.org/10.1002/2015GL066473 |
Bai, L., Li, G. H., Khan, N. G., Zhao, J. M., and Ding, L. (2017). Focal depths and mechanisms of shallow earthquakes in the Himalayan–Tibetan region. Gondwana Res., 41, 390–399. https://doi.org/10.1016/j.gr.2015.07.009 |
Baker, J. W. (2015). Introduction to Probabilistic Seismic Hazard Analysis. White Paper Version 2.1.222 |
Berryman, K., Ries, W., and Litchfield, N. (2014). The Himalayan Frontal Thrust: Attributes for seismic hazard Version 1.0. GEM Faulted Earth Project, available from http://www.nexus.globalquakemodel.org/. Accessed 10 Apr 2017222 |
Bettinelli, P., Avouac, J.-P., Flouzat, M., Jouanne, F., Bollinger, L., Willis, P., and Chitrakar, G. R. (2006). Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements. J. Geod., 80(8-11), 567–589. https://doi.org/10.1007/s00190-006-0030-3 |
Bhatia, S. C., Kumar, M. R., and Gupta, H. K. (1999). A probabilistic seismic hazard map of India and adjoining regions. Ann. di Geofis., 42(6), 1153–1164. |
Bilham, R. (2015). Raising Kathmandu. Nat. Geosci., 8(8), 582–584. https://doi.org/10.1038/ngeo2498 |
Bilham, R. (2013). Societal and observational problems in earthquake risk assessments and their delivery to those most at risk. Tectonophys, 584, 166–173. https://doi.org/10.1016/j.tecto.2012.03.023 |
Bollinger, L., Tapponnier, P., Sapkota, S. N., and Klinger, Y. (2016). Slip deficit in central Nepal: omen for a repeat of the 1344 AD earthquake?. Earth Planet. Space, 68, 12. https://doi.org/10.1186/s40623-016-0389-1 |
Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., and Abrahamson, N. A. (2005). On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull. Seismol. Soc. Am., 95(2), 377–389. https://doi.org/10.1785/0120040073 |
Chaulagain, H., Rodrigues, H., Silva, V., Spacone, E., and Varum, H. (2015). Seismic risk assessment and hazard mapping in Nepal. Nat. Hazards, 78(1), 583–602. https://doi.org/10.1007/s11069-015-1734-6 |
Chiou, B. S. J., and Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq. Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813EQS219M |
Cornell, C. A. (1968). Engineering seismic risk analysis. Bull. Seismol. Soc. Am., 58(5), 1583–1606. |
Cornell, C. A, and Van Marke, E. H. (1969). The major influences on seismic risk. In Proceedings of the Third World Conference on Earthquake Engineering (pp. 69–73). Santiago, Chile.222 |
Cotton, F., Scherbaum, F., Bommer, J. J., and Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target regions: Application to central Europe and rock sites. J. Seismol., 10(2), 137–156. https://doi.org/10.1007/s10950-005-9006-7. |
Danciu, L., Pagani, M., Monelli, D., and Wiemer, S. (2010). GEM1 Hazard : Overview of PSHA Software. GEM Technical Report 2010-2, Pavia, Italy: GEM Foundation.222 |
Ding, L., Kapp, P., and Wan, X. Q. (2005). Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3), TC3001. https://doi.org/10.1029/2004TC001729 |
Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seismol. Res. Lett., 66(4), 8–21. https://doi.org/10.1785/gssrl.66.4.8 |
Gardner, J., and Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?. Bull. Seismol. Soc. Am., 64(5), 1363–1367. |
Grünthal, G., and Wahlström, R. (2003). An MW based earthquake Catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions. J. Seismol., 7(4), 507–531. https://doi.org/10.1023/B:JOSE.0000005715.87363.13 |
Hand, E., and Pulla, P. (2015). Nepal disaster presages a coming megaquake. Science, 348(6234), 484–485. https://doi.org/10.1126/science.348.6234.484 |
Hanks, T. C., and Kanamori, H. (1979). A moment magnitude scale. J. Geophys. Res.: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348 |
IBC. (2006). International Building Code. Washington DC: International Code Council.222 |
Kaviris, G., Papadimitriou, P., Chamilothoris, L., and Makropoulos, K. (2008). Moment magnitudes for small and intermediate earthquakes. In Proceedings of the 31st General Assembly of the European Seismological Commission. ESC.222 |
Kijko, A., and Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys., 59(4), 674–700. https://doi.org/10.2478/s11600-011-0012-6 |
Kijko, A., and Smit, A. (2012). Extension of the aki-utsu b-value estimator for incomplete catalogs. Bull. Seismol. Soc. Am., 102(3), 1283–1287. https://doi.org/10.1785/0120110226 |
Kijko, A., Smit, A., and Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part Ⅲ. Incorporation of uncertainty of earthquake-occurrence model. Bull. Seismol. Soc. Am., 106(3), 1210–1222. https://doi.org/10.1785/0120150252 |
Kolathayar, S., and Sitharam, T. G. (2012). Comprehensive probabilistic seismic hazard analysis of the Andaman-Nicobar regions. Bull. Seismol. Soc. Am., 102(5), 2063–2076. https://doi.org/10.1785/0120110219 |
Letort, J., Bollinger, L., Lyon-Caen, H., Guilhem, A., Cano, Y., Baillard, C., and Adhikari, L. B. (2016). Teleseismic depth estimation of the 2015 Gorkha-Nepal aftershocks. Geophys. J. Int., 207(3), 1584–1595. https://doi.org/10.1093/gji/ggw364 |
Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., Su, H. P., Chen, J., Huang, B.-S., and the Hi-CLIMB Team. (2009). Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946), 1371–1374. https://doi.org/10.1126/science.1167719 |
Nath, S. K., and Thingbaijam, K. K. S. (2012). Probabilistic seismic hazard assessment of India. Seismol. Res. Lett., 83(1), 135–149. https://doi.org/10.1785/gssrl.83.1.135 |
Ordaz, M. G., Cardona, O.-D., Salgado-Gálvez, M. A., Bernal-Granados, G. A., Singh, S. K., and Zuloaga-Romero, D. (2014). Probabilistic seismic hazard assessment at global level. Int. J. Disaster Risk Reduct., 10, 419–427. https://doi.org/10.1016/j.ijdrr.2014.05.004 |
Ordaz, M., Faccioli, E., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., and D’Amico, V. (2015). CRISIS2015 version 2.2: Computer program for computing seismic hazard. Instituto de Ingenieria, UNAM, Mexico.222 |
Ornthammarath, T., Warnitchai, P., Worakanchana, K., Zaman, S., Sigbjörnsson, R., and Lai, C. G. (2011). Probabilistic seismic hazard assessment for Thailand. Bull. Earthq. Eng., 9(2), 367–394. https://doi.org/10.1007/s10518-010-9197-3 |
Pandey, M. R., Tandukar, R. P., Avouac, J. P., Vergne, J., and Héritier, T. (1999). Seismotectonics of the Nepal Himalaya from a local seismic network. J. Asian Earth Sci., 17(5-6), 703–712. https://doi.org/10.1016/S1367-9120(99)00034-6 |
Priestley, K., James, J., and Mckenzie, D. (2008). Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophys. J. Int., 172(1), 345–362. https://doi.org/10.1111/j.1365-246X.2007.03636.x |
Rahman, M. M., Bai, L., Khan, N. G., and Li, G. H. (2018). Probabilistic seismic hazard assessment for Himalayan-Tibetan region from historical and instrumental earthquake Catalogs. Pure Appl. Geophys., 175(2), 685–705. https://doi.org/10.1007/s00024-017-1659-y |
Rajendran, C. P., John, B., and Rajendran, K. (2015). Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust. J. Geophys. Res.: Solid Earth, 120(3), 1623–1641. https://doi.org/10.1002/2014JB011015 |
Ram, T. D., and Wang, G. X. (2013). Probabilistic seismic hazard analysis in Nepal. Earthq. Eng. Eng. Vibra., 12(4), 577–586. https://doi.org/10.1007/s11803-013-0191-z |
Sabetta, F., Lucantoni, A., Bungum, H., and Bommer, J. J. (2005). Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil Dyn. Earthq. Eng., 25(4), 317–329. https://doi.org/10.1016/j.soildyn.2005.02.002 |
Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y., and Tiwari, D. (2013). Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat. Geosci., 6(1), 71–76. https://doi.org/10.1038/ngeo1669. |
Sawires, R., Peláez, J. A., Fat-Helbary, R. E., and Ibrahim, H. A. (2016). Updated probabilistic seismic-hazard values for Egypt. Bull. Seismol. Soc. Am., 106(4), 1788–1801. https://doi.org/10.1785/0120150218 |
Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. J. Seismol., 10(2), 225–236. https://doi.org/10.1007/s10950-006-9012-4 |
Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proceedings of the 1st International Conference on Microzonazion (vol. 2, pp. 897–910), Seattle.222 |
Stevens, V., and Avouac, J.-P. (2015). Interseismic coupling on the Main Himalayan Thrust. Geophys. Res. Lett., 42(14), 5828–5837. https://doi.org/10.1002/2015GL064845 |
Stewart, J. P., Douglas, J., Javanbarg, M. B., Di Alessandro, C., Bozorgnia, Y., Abrahamson, N. A., Boore, D. M., Campbell, K. W., Delavaud, E., and Stafford, P. J. (2013). GEM-PEER Task 3 Project: Selection of a Global Set of Ground Motion Prediction Equations. PEER Report 2013/22.222 |
Stirling, M., and Goded, T. (2012). Magnitude scaling relationships. Report Produced for the GEM Faulted Earth & Regionalisation Global Componets, GNS Science Miscellaneous Series, 42, 35.222 |
Styron, R., Taylor, M., and Okoronkwo, K. (2010). Database of active structures from the Indo-Asian Collision. EOS, 91(20), 181–182. https://doi.org/10.1029/2010EO200001 |
Szeliga, W., Hough, S., Martin, S., and Bilham, R. (2010). Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull. Seismol. Soc. Am., 100(2), 570–584. https://doi.org/10.1785/0120080329 |
Tinti, S., and Mulargia, F. (1985). An improved method for the analysis of the completeness of a seismic catalogue. Lett. Nuovo Cimento, 42(1), 21–27. https://doi.org/10.1007/BF02739471 |
Utsu, T. (1965). A method for determining the value of b in a formula logN=a−bM showing the magnitude-frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ., 13, 99–103. |
Wang, Z. M., Butler, D. T., Woolery, E. W., and Wang, L. M. (2012). Seismic hazard assessment for the Tianshui urban area, Gansu Province, China. Int. J. Geophys., 2012, 461863. https://doi.org/10.1155/2012/461863 |
Wells, D. L., and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am., 84(4), 974–1002. |
Wiemer, S., and Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am., 90(4), 859–869. https://doi.org/10.1785/0119990114 |
Woo, G. (1996). Kernel estimation methods for seismic hazard area source modeling. Bull. Seismol. Soc. Am., 86(2), 353–362. |
Wyss, M. (2005). Human losses expected in Himalayan earthquakes. Nat. Hazards, 34(3), 305–314. https://doi.org/10.1007/s11069-004-2073-1 |
Yen, Y. T., and Ma, K. F. (2011). Source-Scaling relationship for M 4.6-8.9 earthquakes, specifically for earthquakes in the Collision Zone of Taiwan. Bull. Seismol. Soc. Am., 101(2), 464–481. https://doi.org/10.1785/0120100046 |
Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev., 76(1-2), 1–131. https://doi.org/10.1016/j.earscirev.2005.05.004 |
Youngs, R. R., Chiou, S.-J., Silva, W. J., and Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol. Res. Lett., 68(1), 58–73. https://doi.org/10.1785/gssrl.68.1.58 |
Zhang, P. Z., Yang, Z. X., Gupta, H. K., Bhatia, S. C., and Shedlock, K. M. (1999). Global seismic hazard assessment program (GSHAP) in continental Asia. Ann. Di Geof., 42(6), 1167–1190. https://doi.org/10.4401/ag-3778 |
Zhang, W. B., Iwata, T., and Irikura, K. (2006). Dynamic simulation of a dipping fault using a three-dimensional finite difference method with nonuniform grid spacing. J. Geophys. Res., 111, B05301. https://doi:10.1029/2005JB003725 |
Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa H., Irikura K., Thio H. K., Fukushima, Y. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull. Seismol. Soc. Am., 96(3), 898–913. https://doi.org/10.1785/0120050122 |
[1] |
BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003 |
[2] |
Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028 |
[3] |
QiZhen Du, WanYu Wang, WenHan Sun, Li-Yun Fu, 2022: Seismic attenuation compensation with spectral-shaping regularization, Earth and Planetary Physics, 6, 259-274. doi: 10.26464/epp2022024 |
[4] |
LeLin Xing, ZiWei Liu, JianGang Jia, ShuQing Wu, ZhengSong Chen, XiaoWei Niu, 2021: Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal (Gorkha) earthquake observed by superconducting gravimeters in China contient, Earth and Planetary Physics, 5, 141-148. doi: 10.26464/epp2021018 |
[5] |
YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035 |
[6] |
HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029 |
[7] |
PengCheng Zhou, William L. Ellsworth, HongFeng Yang, Yen Joe Tan, Gregory C. Beroza, MinHan Sheng, RiSheng Chu, 2021: Machine-learning-facilitated earthquake and anthropogenic source detections near the Weiyuan Shale Gas Blocks, Sichuan, China, Earth and Planetary Physics, 5, 501-519. doi: 10.26464/epp2021053 |
[8] |
Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013 |
[9] |
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049 |
[10] |
Jie Dong, Gabriele Cambiotti, HanJiang Wen, Roberto Sabadini, WenKe Sun, 2021: Treatment of discontinuities inside Earth models: Effects on computed coseismic deformations, Earth and Planetary Physics, 5, 90-104. doi: 10.26464/epp2021010 |
[11] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[12] |
Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016 |
[13] |
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: Wavenumber-4 spectral component extracted from TIMED/SABER observations, Earth and Planetary Physics, 4, 436-448. doi: 10.26464/epp2020040 |
[14] |
BinBin Liao, XiaoDong Chen, JianQiao Xu, JiangCun Zhou, HePing Sun, 2022: Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method, Earth and Planetary Physics, 6, 241-247. doi: 10.26464/epp2022025 |
[15] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
[16] |
JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019 |
[17] |
Yang Li, QuanLiang Chen, JianPing Li, WenJun Zhang, MinHong Song, Wei Hua, HongKe Cai, XiaoFei Wu, 2019: The tropical Pacific cold tongue mode and its associated main ocean dynamical process in CMIP5 models, Earth and Planetary Physics, 3, 400-413. doi: 10.26464/epp2019041 |
[18] |
WeiLong Rao, WenKe Sun, 2022: Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data, Earth and Planetary Physics, 6, 228-240. doi: 10.26464/epp2022021 |
[19] |
Sha Tao, Zhengfeng Zhang, Bei Zhang, Yaolin Shi, David A Yuen, Bojing Zhu, 2022: Moonquake hazard distribution and the rolling trajectories of the lunar boulder: I. Inverse algorithm and validation of PGA, Earth and Planetary Physics. doi: 10.26464/epp2022030 |
[20] |
YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)