Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Takahashi, H., Essien, P., Figueiredo, C. A. O. B., Wrasse, C. M., Barros, D., Abdu, M. A., Otsuka, Y., Shiokawa, K., and Li, G. Z. (2021). Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere. Earth Planet. Phys., 5(5), 368–377. http://doi.org/10.26464/epp2021047

2021, 5(5): 368-377. doi: 10.26464/epp2021047

SPACE PHYSICS: IONOSPHERIC PHYSICS

Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere

1. 

Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil

2. 

Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

3. 

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: H. Takahashi, hisao.takahashi@inpe.br

Received Date: 2021-04-11
Web Publishing Date: 2021-09-02

Large Scale Wave Structures (LSWS) in the equatorial ionospheric F-region were observed by measuring spatial and temporal variations within detrended total electron content (dTEC) data obtained by ground-based GNSS receivers over the South American continent. By using dTEC-maps, we have been able to produce, for the first-time, two-dimensional representations of LSWS. During the period from September to December, the LSWS frequently occurred starting a few hours prior to Equatorial Plasma Bubble (EPB) development. From 17 events of LSWS observed in 2014 and 2015, wave characteristics were obtained: the observed wavelengths, periods, and the phase speeds are respectively, ~900 km, ~41 min and ~399 m/s; the waves propagated from the northeast to southeast. In some cases the front of the oscillation was meridionally aligned, extending to more than 1600 km, the first time such large extension of the wavefront has been reported. From F-layer bottom height oscillation data, measured by ionosonde, LSWS exhibit two different vertical phase propagation modes, in-phase and downward phase. The former mode indicates the presence of a polarization electric field in the F-layer bottom side; the latter suggests propagation of atmospheric gravity waves. The presence of LSWS near the solar terminator, followed by the development of EPBs, suggests that the upwelling of the F-layer bottom height produces a condition favorable to the development of Rayleigh–Taylor instability.

Key words: ionosphere; Equatorial Plasma Bubble; LSWS; TEC

Abdu, M. A., de Souza, J. R., Kherani, E. A., Batista, I. S., MacDougall, J. W., and Sobral, J. H. A. (2015). Wave structure and polarization electric field development in the bottomside F layer leading to postsunset equatorial spread F. J. Geophys. Res.: Space Phys., 120(8), 6930–6940. https://doi.org/10.1002/2015JA021235

Barros, D., Takahashi, H., Wrasse, C. M., and Figueiredo, C. A. O. B. (2018). Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America. Ann. Geophys., 36(1), 91–100. https://doi.org/10.5194/angeo-36-91-2018

Essien, P. (2020). Study on medium-scale traveling ionospheric disturbances observed in the South American equatorial region. PhD thesis. INPE.222

Figueiredo, C. A. O. B., Takahashi, H., Wrasse, C. M., Otsuka, Y., Shiokawa, K., and Barros, D. (2018). Medium scale traveling ionospheric disturbances observed by detrended total electron content maps over Brazil. J. Geophys. Res.: Space Phys., 123(3), 2215–2227. https://doi.org/10.1002/2017JA025021

Forbes, J. M., Bruinsma, S. L., Miyoshi, Y., and Fujiwara, H. (2008). A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite. Geophys. Res. Lett., 35(14), L14802. https://doi.org/10.1029/2008GL034075

Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics. International Geophysics Series 96 (2nd ed). San Diego, CA, USA: Academic Press.222

Krall, J., Huba, J. D., Ossakow, S. L., Joyce, G., Makela, J. J., Miller, E. S., and Kelley, M. C. (2011). Modeling of equatorial plasma bubbles triggered by non-equatorial traveling ionospheric disturbances. Geophys. Res. Lett., 38(8), L08103. https://doi.org/10.1029/2011GL046890

Li, G. Z., Ning, B. Q., Abdu, M. A., Wan, W. X., and Hu, L. H. (2012). Precursor signatures and evolution of post-sunset equatorial spread-F observed over Sanya. J. Geophys. Res., 117(A8), A08321. https://doi.org/10.1029/2012JA017820

Liu, H. X., Lühr, H., and Watanabe, S. (2009). A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP. Geophys. Res. Lett., 36(10), L10109. https://doi.org/10.1029/2009GL038165

Liu, K. K., Li, G. Z., and Ning, B. Q. (2019). Possible evidence for small-scale wave seeding of equatorial plasma bubbles. Adv. Space Res., 63(11), 3612–3620. https://doi.org/10.1016/j.asr.2019.02.025

Narayanan, V. L., Taori, A., Patra, A. K., Emperumal, K., and Gurubaran, S. (2012). On the importance of wave-like structures in the occurrence of equatorial plasma bubbles: A case study. J. Geophys. Res., 117(A1), A01306. https://doi.org/10.1029/2011JA017054

Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., and Miyazaki, S. (2002). A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space, 54(1), 63–70. https://doi.org/10.1186/BF03352422

Patra, A. K., Taori, A., Chaitanya, P. P., and Sripathi, S. (2013). Direct detection of wavelike spatial structure at the bottom of the F region and its role on the formation of equatorial plasma bubble. J. Geophys. Res.: Space Phys., 118(3), 1196–1202. https://doi.org/10.1002/jgra.50148

Ram, S. T., Yamamoto, M., Tsunoda, R. T., Chau, H. D., Hoang, T. L., Damtie, B., Wassaie, M., Yatini, C. Y., Manik, T., and Tsugawa, T. (2014). Characteristics of large-scale wave structure observed from African and Southeast Asian longitudinal sectors. J. Geophys. Res.: Space Phys., 119(3), 2288–2297. https://doi.org/10.1002/2013JA019712

Röttger, J. (1973). Wave-like structures of large-scale equatorial spread-F irregularities. J. Atmos. Terr. Phys., 35(6), 1195–1206. https://doi.org/10.1016/0021-9169(73)90016-0

Saito, S., and Maruyama, T. (2007). Large-scale longitudinal variation in ionospheric height and equatorial spread F occurrences observed by ionosondes. Geophys. Res. Lett., 34(16), L16109. https://doi.org/10.1029/2007GL030618

Takahashi, H., Wrasse, C. M., Denardini, C. M., Pádua, M. B., de Paula, E. R., Costa, S. M. A., Otsuka, Y., Shiokawa, K., Monico, J. F. G., … Sant’Anna, N. (2016). Ionospheric TEC weather map over South America. Space Wea., 14(11), 937–949. https://doi.org/10.1002/2016SW001474

Takahashi, H., Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D. Abdu, M. A., Otsuka, Y., and Shiokawa, K. (2018). Equatorial plasma bubble seeding by MSTIDs in the ionosphere. Progress in Earth and Planetary Science, 5(1), 32. https://doi.org/10.1186/s40645-018-0189-2

Takahashi, H., Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Paulino, I., Essien, P., Abdu, M. A., Otsuka, Y., and Shiokawa, K. (2020). Equatorial plasma bubble occurrence under propagation of MSTID and MLT gravity waves. J. Geophys. Res.: Space Phys., 125(9), e2019JA027566. https://doi.org/10.1029/2019JA027566

Thampi, S. V., Yamamoto, M., Tsunoda, R. T., Otsuka, Y., Tsugawa, T., Uemoto, J., and Ishii, M. (2009). First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite. Geophys. Res. Lett., 36(18), L18111. https://doi.org/10.1029/2009GL039887

Tsunoda, R. T., and White, B. R. (1981). On the generation and growth of equatorial backscatter plumes-1. Wave structure in the bottomside F layer. J. Geophys. Res., 86(A5), 3610–3616. https://doi.org/10.1029/JA086iA05p03610

Tsunoda, R. T. (2005). On the enigma of day-to-day variability in equatorial spread F. Geophys. Res. Lett., 32(8), L08103. https://doi.org/10.1029/2005GL022512

Tsunoda, R. T. (2015). Upwelling: a unit of disturbance in equatorial spread F. Prog. Earth Planet. Sci., 2(1), 9. https://doi.org/10.1186/s40645-015-0038-5

Tsunoda, R. T., Saito, S., and Nguyen, T. T. (2018). Post-sunset rise of equatorial F layer—or upwelling growth?. Prog. Earth Planet. Sci., 5(1), 22. https://doi.org/10.1186/s40645-018-0179-4

Vadas, S. L., Taylor, M. J., Pautet, P. D., Stamus, P. A., Fritts, D. C., Liu, H. L., São Sabbas, F. T., Rampinelli, V. T., Batista, P., and Takahashi, H. (2009). Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann. Geophys., 27(1), 231–259. https://doi.org/10.5194/angeo-27-231-2009

[1]

LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao, 2021: Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China, Earth and Planetary Physics, 5, 435-449. doi: 10.26464/epp2021048

[2]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[3]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

[4]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[5]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[6]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[7]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[8]

XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063

[9]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[10]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[11]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[12]

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011

[13]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[14]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[15]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[16]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[17]

K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039

[18]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[19]

Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006

[20]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li