Citation:
Gu, J., Zhang, Y. H., Yang, N., and Wang, R. (2020). Diurnal variability of the planetary boundary layer height estimated from radiosonde data. Earth Planet. Phys., 4(5), 479–492doi: 10.26464/epp2020042
2020, 4(5): 479-492. doi: 10.26464/epp2020042
Diurnal variability of the planetary boundary layer height estimated from radiosonde data
1. | School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China |
2. | State Oceanic Administration Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China |
Diurnal variations in the planetary boundary layer height (PBLH) at different latitudes over different surface characteristics are described, based on 45 years (1973−2017) of radiosonde observations. The PBLH is determined from the radiosonde data by the bulk Richardson number (BRN) method and verified by the parcel method and the potential temperature gradient method. In general, the BRN method is able to represent the height of the convective boundary layer (BL) and neutral residual layer cases but has relatively large uncertainty in the stable BL cases. The diurnal cycle of the PBLH over land is quite different from the cycle over ocean, as are their seasonal variations. For stations over land, the PBLH shows an apparent diurnal cycle, with a distinct maximum around 15:00 LT, and seasonal variation, with higher values in summer. Compared with the PBLH over land, over oceans the PBLH diurnal cycles are quite mild, the PBLHs are much lower, and the seasonal changes are less pronounced. The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near-surface temperature and negatively correlated with the near-surface relative humidity. Finally, although at most latitudes the daytime PBLH exhibits, over these 45 years, a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean, there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes.
Ao, C. O., Waliser, D. E., Chan, S. K., Li, J. L., Tian, B. J., Xie, F. Q., and Mannucci, A. J. (2012). Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res.: Atmos., 117(D16), D16117. https://doi.org/10.1029/2012JD017598 |
Bates, J. J., and Jackson, D. L. (2001). Trends in upper-tropospheric humidity. Geophys. Res. Lett., 28(9), 1695–1698. https://doi.org/10.1029/2000GL012544 |
Beyrich, F. (1997). Mixing height estimation from SODAR data-A critical discussion. Atmos. Environ., 31(23), 3941–3953. https://doi.org/10.1016/S1352-2310(97)00231-8 |
Bissinger, K., and Bogner, F. X. (2018). Environmental literacy in practice: education on tropical rainforests and climate change. Environ. Dev. Sustain., 20(5), 2079–2094. https://doi.org/10.1007/s10668-017-9978-9 |
Chan, K. M., and Wood, R. (2013). The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J. Geophys. Res.: Atmos., 118(22), 12422–12434. https://doi.org/10.1002/2013JD020147 |
Cherfouh, R., Lucas, Y., Derridj, A., and Merdy, P. (2018). Long-term, low technicality sewage sludge amendment and irrigation with treated wastewater under Mediterranean climate: impact on agronomical soil quality. Environ. Sci. Pollut. Res., 25(35), 35571–35581. https://doi.org/10.1007/s11356-018-3463-3 |
Chu, Y. Q., Li, J., Li, C. C., Tan, W. S., Su, T. N., and Li, J. (2019). Seasonal and diurnal variability of planetary boundary layer height in Beijing: Intercomparison between MPL and WRF results. Atmos. Res., 227, 1–13. https://doi.org/10.1016/j.atmosres.2019.04.017 |
Clifford, S. F., Kaimal, J. C., Lataitis, R. J., and Strauch, R. G. (1994). Ground-based remote profiling in atmospheric studies: An overview. Proc. IEEE, 82(3), 313–355. https://doi.org/10.1109/5.272138 |
Daher, D. H., Gaillard, L., Amara, M., and Ménézo, C. (2018). Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant. Renew. Energy, 125, 729–737. https://doi.org/10.1016/j.renene.2018.03.013 |
Durre, I., and Yin, X. G. (2008). Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteor. Soc., 89(9), 1257–1261. https://doi.org/10.1175/2008BAMS2603.1 |
Durre, I., Vose, R. S., and Wuertz, D. B. (2006). Overview of the integrated global radiosonde archive. J. Climate, 19(1), 53–68. https://doi.org/10.1175/JCLI3594.1 |
Eresmaa, N., Karppinen, A., Joffre, S. M., Räsänen, J., and Talvitie, H. (2006). Mixing height determination by ceilometer. Atmos. Chem. Phys., 6(6), 1485–1493. https://doi.org/10.5194/acp-6-1485-2006 |
Guo, J. P., Miao, Y. C., Zhang, Y., Liu, H., Li, Z. Q., Zhang, W. C., He, J., Lou, M. Y., Yan, Y., … Zhai, P. M. (2016). The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys., 16(20), 13309–13319. https://doi.org/10.5194/acp-16-13309-2016 |
Guo, J. P., Su, T. N., Li, Z. Q., Miao, Y. C., Li, J., Liu, H., Xu, H., Cribb, M., and Zhai, P. M. (2017). Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols. Geophys. Res. Lett., 44(11), 5700–5708. https://doi.org/10.1002/2017GL073533 |
Guo, J. P., Li, Y., Cohen, J. B., Li, J., Chen, D. D., Xu, H., Liu, L., Yin, J. F., Hu, K. X., and Zhai, P. M. (2019). Shift in the temporal trend of boundary layer height in China using long-term (1979–2016) radiosonde data. Geophys. Res. Lett., 46(11), 6080–6089. https://doi.org/10.1029/2019GL082666 |
Jordan, N. S., Hoff, R. M., and Bacmeister, J. T. (2010). Validation of Goddard earth observing system-version 5 MERRA planetary boundary layer heights using CALIPSO. J. Geophys. Res. Atmos., 115(D24), D24218. https://doi.org/10.1029/2009JD013777 |
Lanzante, J. R. (1996). Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol., 16(11), 1197–1226. https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L |
Li, Z. Q., Guo, J. P., Ding, A. J., Liao, H., Liu, J. J., Sun, Y., Wang, T. J., Xue, H. W., … Zhu, B. (2017). Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4(6), 810–833. https://doi.org/10.1093/nsr/nwx117 |
Liu, B., Ma, Y. Y., Guo, J. P., Wei, G., Zhang, Y., Li, J., Guo, X. R., and Shi Y. F. (2019). Boundary Layer Height as derived from ground-based Radar wind profiler in Beijing. IEEE. T. Geosci. Remote., 57(10), 8095–8104. https://doi.org/10.1109/TGRS.2019.2918301 |
Liu, L., Guo, J. P., Miao, Y. C., Liu, S., Li, J., Chen, D. D., He, J., and Cui, C. G. (2018). Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China. Environ. Pollut., 241, 646–653. https://doi.org/10.1016/j.envpol.2018.06.008 |
Liu, S. Y., and Liang, X. Z. (2010). Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23(21), 5790–5809. https://doi.org/10.1175/2010JCLI3552.1 |
Liu, Y., Tang, N. J., and Yang, X. S. (2016). Height of atmospheric boundary layer as detected by COSMIC GPS radio occultation data. J. Trop. Meteor., 22(1), 74–82. https://doi.org/10.16555/j.1006-8775.2016.01.009 |
Molod, A., Salmun, H., and Dempsey, M. (2015). Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data. J. Atmos. Ocean. Technol., 32(9), 1545–1561. https://doi.org/10.1175/JTECH-D-14-00155.1 |
Norton, C. L., and Hoidale, G. B. (1976). The diurnal variation of mixing height by season over white sands missile range, New Mexico. Mon. Wea. Rev., 104(10), 1317–1320. https://doi.org/10.1175/1520-0493(1976)104<1317:tdvomh>2.0.co;2 |
Pavlov, A. V., and Pavlova, N. M. (2007). Anomalous night-time peaks in diurnal variations of NmF2 close to the geomagnetic equator: A statistical study. J. Atmos. Sol.-Terr. Phys., 69(15), 1871–1883. https://doi.org/10.1016/j.jastp.2007.07.003 |
Raval, A., and Ramanathan, V. (1989). Observational determination of the greenhouse effect. Nature, 342(6251), 758–761. https://doi.org/10.1038/342758a0 |
Rinke, A., Segger, B., Crewell, S., Maturilli, M., Naakka, T., Nygård, T., Vihma, T., Alshawaf, F., Dick, G., …. Keller, J. (2019). Trends of vertically integrated water vapor over the arctic during 1979-2016: Consistent moistening all over?. J. Climate, 32(18), 6097–6116. https://doi.org/10.1175/JCLI-D-19-0092.1 |
Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C., Solomon, S., Schmidt, G. A., Fyfe, J. C., Cole, J. N. S., … Wentz, F. J. (2014). Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7(3), 185–189. https://doi.org/10.1038/ngeo2098 |
Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., and Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34(7), 1001–1027. https://doi.org/10.1016/s1352-2310(99)00349-0 |
Seidel, D. J., Zhang, Y. H., Beljaars, A., Golaz, J. C., Jacobson, A. R., and Medeiros, B. (2012). Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res.: Atmos., 117(D17), D17106. https://doi.org/10.1029/2012JD018143 |
Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-3027-8222 |
Su, T. N., Li, J., Li, C. C., Xiang, P. Z., Lau, A. K. H., Guo, J. P., Yang, D. W., And Miao, Y. C. (2017). An intercomparison of long-term planetary boundary layer heights retrieved from CALIPSO, ground-based lidar, and radiosonde measurements over Hong Kong. J. Geophys. Res.: Atmos., 122(7), 3929–3943. https://doi.org/10.1002/2016JD025937 |
Tang, X. G., Li, H. P., Ma, M. G., Yao, L., Peichl, M., Arain, A., Xu, X. B., and Goulden, M. (2017). How do disturbances and climate effects on carbon and water fluxes differ between multi-aged and even-aged coniferous forests?. Sci. Total Environ., 599–600, 1583–1597. https://doi.org/10.1016/j.scitotenv.2017.05.119 |
Vogelezang, D. H. P., and Holtslag, A. A. M. (1996). Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81(3–4), 245–269. https://doi.org/10.1007/bf02430331 |
Von Engeln, A., and Teixeira, J. (2013). A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26(17), 6575–6590. https://doi.org/10.1175/JCLI-D-12-00385.1 |
Wang, X. Y., and Wang, K. C. (2016). Homogenized variability of radiosonde-derived atmospheric boundary layer height over the global land surface from 1973 to 2014. J. Climate, 29(19), 6893–6908. https://doi.org/10.1175/JCLI-D-15-0766.1 |
Wulfmeyer, V., Behrendt, A., Kottmeier, C., Corsmeier, U., Barthlott, C., Craig, G. C., Hagen, M., Althausen, D., Aoshima, F., … Wirth, M. (2011). The convective and orographically-induced precipitation study (COPS): the scientific strategy, the field phase, and research highlights. Quart. J. Roy. Meteor. Soc., 137(S1), 3–30. https://doi.org/10.1002/qj.752 |
Zhang, W. C., Guo, J. P., Miao, Y. C., Liu, H., Zhang, Y., Li, Z. Q., and Zhai, P. M. (2016). Planetary boundary layer height from CALIOP compared to radiosonde over China. Atmos. Chem. Phys., 16(15), 9951–9963. https://doi.org/10.5194/acp-2016-250 |
Zhang, Y. H., Seidel, D. J., and Zhang, S. D. (2013). Trends in planetary boundary layer height over Europe. J. Climate, 26(24), 10071–10076. https://doi.org/10.1175/JCLI-D-13-00108.1 |
Zhang, Y. H., Zhang, S. D., Huang, C. M., Huang, K. M., Gong, Y., and Gan, Q. (2014). Diurnal variations of the planetary boundary layer height estimated from intensive radiosonde observations over Yichang, China. Sci. China Technol. Sci., 57(11), 2172–2176. https://doi.org/10.1007/s11431-014-5639-5 |
Zhang, Y. H., and Li, S. Y. (2019). Climatological characteristics of planetary boundary layer height over Japan. Int. J. Climatol., 39(10), 4015–4028. https://doi.org/10.1002/joc.6056 |
[1] |
YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035 |
[2] |
Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012 |
[3] |
Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012 |
[4] |
Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062 |
[5] |
WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001 |
[6] |
Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009 |
[7] |
Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046 |
[8] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[9] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)