Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Shen, J. X., Chen, Y., Sun, Y., Liu, L., Pan, Y. X., and Lin, W. (2022). Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments. Earth Planet. Phys., 6(5), 431–450. http://doi.org/10.26464/epp2022042

2022, 6(5): 431-450. doi: 10.26464/epp2022042

PLANETARY SCIENCES

Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Key points:
  • The strategy of Mars biosignature detection calls for more spatiotemporal and environmental characterizations of potential landing sites on Mars.
  • We divide terrestrial Mars analogs into four categories based on different Mars geologic ages considering meteorite impact frequency, volcanic activity, and surface water content.
  • We discuss various technologies used for Mars biosignature detection and their applications in different Mars analogs.

Corresponding author: Wei Lin, weilin@mail.iggcas.ac.cn

Received Date: 2022-04-20
Web Publishing Date: 2022-08-16

For decades, the search for potential signs of Martian life has attracted strong international interest and has led to significant planning and scientific implementation. Clearly, in order to detect potential life signals beyond Earth, fundamental questions, such as how to define such terms as “life” and “biosignature”, have been given considerable attention. Due to the high costs of direct exploration of Mars, Mars-like regions on Earth have been invaluable targets for astrobiological research, places where scientists could practice the search for “biosignatures” and refine ways to detect them. This review summarizes scientific instrumental techniques that have resulted from this work. Instruments must necessarily be our “eyes” and “hands” as we attempt to identify and quantify biosignatures on Mars. Scientific devices that can be applied in astrobiology include mass spectrometers and electromagnetic-spectrum-based spectrometers, redox potential indicators, circular dichroism polarimeters, in situ nucleic acid sequencers, life isolation/cultivation systems, and imagers. These devices and how to interpret the data they collect have been tested in Mars-analog extreme environments on Earth to validate their practicality on Mars. To anticipate the challenges of instrumental detection of biosignatures through the full evolutionary history of Mars, Terrestrial Mars analogs are divided into four major categories according to their similarities to different Martian geological periods (the Early−Middle Noachian Period, the Late Noachian−Early Hesperian Period, the Late Hesperian−Early Amazonian Period, and the Middle−Late Amazonian Period). Future missions are suggested that would focus more intensively on Mars’ Southern Hemisphere, once landing issues there are solved by advances in spacecraft engineering, since exploration of these early terrains will permit investigations covering a wider continuum of the shifting habitability of Mars through its geological history. Finally, this paper reviews practical applications of the range of scientific instruments listed above, based on the four categories of Mars analogs here on Earth. We review the selection of instruments suitable for autonomous robotic rover tests in these Mars analogs. From considerations of engineering efficiency, a Mars rover ought to be equipped with as few instrument assemblies as possible. Therefore, once candidate landing regions on Mars are defined, portable suites of instruments should be smartly devised on the basis of the known geological, geochemical, geomorphological, and chronological characteristics of each Martian landing region. Of course, if Mars sample-return missions are successful, such samples will allow experiments in laboratories on Earth that can be far more comprehensive and affordable than is likely to be practicable on Mars. To exclude false positive and false negative conclusions in the search for extraterrestrial life, multiple diverse and complementary analytical techniques must be combined, replicated, and carefully interpreted. The question of whether signatures of life can be detected on Mars is of the greatest importance. Answering that question is extremely challenging but appears to have become manageable.

Key words: biosignature, detection framework, extraterrestrial life, evolutionary history of Mars, field trial, instrument, Mars analog

Abramov, O., and Mojzsis, S. J. (2008). Thermal state of the lithosphere during Late Heavy Bombardment. Geochim. Cosmochim. Acta, 72(12), A2.

Abramov, O., and Mojzsis, S. J. (2016). Thermal effects of impact bombardments on Noachian Mars. Earth Planet. Sci. Lett., 442, 108–120. https://doi.org/10.1016/j.jpgl.2016.02.035

Aerts, J. W., Riedo, A., Melton, D. J., Martini, S., Flahaut, J., Meierhenrich, U. J., Meinert, C., Myrgorodska, I., Lindner, R., and Ehrenfreund, P. (2020). Biosignature analysis of Mars soil analogs from the atacama desert: challenges and implications for future missions to Mars. Astrobiology, 20(6), 766–784. https://doi.org/10.1089/ast.2019.2063

Anderson, M. S., Andringa, J. M., Carlson, R. W., Conrad, P., Hartford, W., Shafer, M., Soto, A., Tsapin, A. I., Dybwad, J. P., … Hand, K. (2005). Fourier transform infrared spectroscopy for Mars science. Rev. Sci. Instrum., 76(3), 034101. https://doi.org/10.1063/1.1867012

Andrews-Hanna, J. C., and Lewis, K. W. (2011). Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res., 116(E2), E02007. https://doi.org/10.1029/2010je003709

Anglés, A., and Li, Y. L. (2017). The western Qaidam Basin as a potential Martian environmental analogue: an overview. J. Geophys. Res., 122(5), 856–888. https://doi.org/10.1002/2017je005293

Ansdell, M., Ehrenfreund, P., and Mckay, C. (2011). Stepping stones toward global space exploration. Acta Astronaut., 68(11-12), 2098–2113. https://doi.org/10.1016/j.actaastro.2010.10.025

Archer, S. D. J., De Los Ríos, A., Lee, K. C., Niederberger, T. S., Cary, S. C., Coyne, K. J., Douglas, S., Lacap-Bugler, D. C., and Pointing, S. B. (2017). Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol., 40(5), 997–1006. https://doi.org/10.1007/s00300-016-2024-9

Arevalo, R., Brinckerhoff, W., van Amerom, F., Danell, R., Pinnick, V., Li, X., Getty, S., Hovmand, L., Grubisic, A., … Steininger, H. (2015). Design and demonstration of the Mars organic molecule analyzer (MOMA) on the exomars 2018 rover. In Proceedings of 2015 IEEE Aerospace Conference (pp. 1−11). Big Sky, USA: IEEE. https://doi.org/10.1109/AERO.2015.7119073

Artz, R. R. E., Chapman, S. J., Robertson, A. H. J., Potts, J. M., Laggoun-Defarge, F., Gogo, S., Comont, L., Disnar, J. R., and Francez, A. J. (2008). FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biol. Biochem., 40(2), 515–527. https://doi.org/10.1016/j.soilbio.2007.09.019

Aun, M., Lakkala, K., Sanchez, R., Asmi, E., Nollas, F., Meinander, O., Sogacheva, L., De Bock, V., Arola, A., … van Opstal, B. (2019). UV radiation measurements in Marambio, Antarctica during years 2017-2019 in a wider temporal and spatial context. Atmos. Chem. Phys. Dis., 1–21. https://doi.org/10.5194/acp-2019-896

Azua-Bustos, A., Fairén, A. G., Silva, C. G., Carrizo, D., Fernandez-Martinez, M. Á., Arenas-Fajardo, C., Fernaádez-Sampedro, M., Gil-Lozano, C., Sanchez-García, L., … Rampe, E. B. (2020). Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci. Rep., 10(1), 19183. https://doi.org/10.1038/s41598-020-76302-z

Azua-Bustos, A., González-Silva, C. A., and Fairén, A. G. (2022). The atacama desert in Northern Chile as an analog model of Mars. Front. Astron. Space Sci., 8, 810426. https://doi.org/10.3389/fspas.2021.810426

Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., Fielden, P. R., Fogarty, S. W., Fullwood, N. J., … Martin, F. L. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc., 9(8), 1771–1791. https://doi.org/10.1038/nprot.2014.110

Bar-Nun, A., and Hartman, H. (1978). Synthesis of organic compounds from carbon monoxide and water by UV photolysis. Orig. Life, 9(2), 93–101. https://doi.org/10.1007/BF00931407

Battler, M. M., Osinski, G. R., Lim, D. S. S., Davila, A. F., Michel, F. A., Craig, M. A., Izawa, M. R. M., Leoni, L., Slater, G. F., … Banerjee, N. R. (2013). Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars. Icarus, 224(2), 382–398. https://doi.org/10.1016/j.icarus.2012.05.015

Bedau, M. A., and Cleland, C. E. (2010). Definitions of life. In C. Sagan (Ed.), The Nature of Life Classical and Contemporary Perspectives from Philosophy and Science (pp. 303-306). Cambridge: Cambridge University Press). https://doi.org/10.1017/CBO9780511730191.029

Belilla, J., Moreira, D., Jardillier, L., Reboul, G., Benzerara, K., López-García, J. M., Bertolino, P., López-Archilla, A. I., and López-García, P. (2019). Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat. Ecol. Evol., 3(11), 1552–1561. https://doi.org/10.1038/s41559-019-1005-0

Belov, A. A., Cheptsov, V. S., Vorobyova, E. A., Manucharova, N. A., and Ezhelev, Z. S. (2019). Stress-tolerance and taxonomy of culturable bacterial communities isolated from a central Mojave Desert soil sample. Geosciences, 9(4), 166. https://doi.org/10.3390/geosciences9040166

Bernhard, G., Booth, C. R., Ehramjian, J. C., and Nichol, S. E. (2006). UV climatology at McMurdo Station, Antarctica, based on version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network. J. Geophys. Res., 111(D11), D11201. https://doi.org/10.1029/2005jd005857

Bhartia, R., Beegle, L. W., Deflores, L., Abbey, W., Hollis, J. R., Uckert, K., Monacelli, B., Edgett, K. S., Kennedy, M. R., … Zan, J. (2021). Perseverance's scanning habitable environments with raman and luminescence for organics and chemicals (SHERLOC) investigation. Space Sci. Rev., 217(4), 58. https://doi.org/10.1007/s11214-021-00812-z

Bibring, J. P., Langevin, Y., Mustard, J. F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., … Neukum, G. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science, 312(5772), 400–404. https://doi.org/10.1126/science.1122659

Bish, D., Blake, D., Vaniman, D., Sarrazin, P., Bristow, T., Achilles, C., Dera, P., Chipera, S., Crisp, J., … Yen, A. (2014). The first X-ray diffraction measurements on Mars. IUCrJ, 1(6), 514–522. https://doi.org/10.1107/S2052252514021150

Bishop, J. L., Schelble, R. T., McKay, C. P., Brown, A. J., and Perry, K. A. (2011). Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates. Int. J. Astrobiol., 10(4), 349–358. https://doi.org/10.1017/S1473550411000206

Blachowicz, A., Singh, N. K., Wood, J. M., Debieu, M., O'hara, N. B., Mason, C. E., and Venkateswaran, K. (2021). Draft genome sequences of Aspergillus and Penicillium species isolated from the international space station and crew resupply vehicle capsule. Microbiol. Resour. Announc., 10(13), e01398–20. https://doi.org/10.1128/MRA.01398-20

Blackmond, D. G. (2010). The origin of biological homochirality. Cold Spring Harb Perspect. Biol., 2(5), a002147. https://doi.org/10.1101/cshperspect.a002147

Bosak, T., Moore, K. R., Gong, J., and Grotzinger, J. P. (2021). Searching for biosignatures in sedimentary rocks from early Earth and Mars. Nat. Rev. Earth Environ., 2(7), 490–506. https://doi.org/10.1038/s43017-021-00169-5

Bourke, M. C., and Goudie, A. S. (2009). Varieties of barchan form in the Namib Desert and on Mars. Aeolian Res., 1(1-2), 45–54. https://doi.org/10.1016/j.aeolia.2009.05.002

Bridges, J. C., Hicks, L. J., and Treiman, A. H. (2019). Carbonates on Mars. In J. Filiberto, et al. (Eds.), Volatiles in the Martian Crust (pp. 89-118). Amsterdam: Elsevier. https://doi.org/10.1016/C2015-0-01738-5

Brinckerhoff, W. B., Pinnick, V. T., van Amerom, F. H. W., Danell, R. M., Arevalo, R. D., Atanassova, M. S., Li, X., Mahaffy, P. R., Cotter, R. J., … Steininger, H. (2013). Mars organic molecule analyzer (MOMA) mass spectrometer for exomars 2018 and beyond. In Proceedings of 2013 IEEE Aerospace Conference (pp. 1−8). Big Sky, USA: IEEE. https://doi.org/10.1109/AERO.2013.6496942

Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A. H., Logan, G. A., and Bowden, S. A. (2005). Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437(7060), 866–870. https://doi.org/10.1038/nature04068

Brož, P., Bernhardt, H., Conway, S. J., and Parekh, R. (2021). An overview of explosive volcanism on Mars. J. Volcanol. Geotherm. Res., 409, 107125. https://doi.org/10.1016/j.jvolgeores.2020.107125

Bushby, A. J., Mariggi, G., Armer, H. E. J., and Collinson, L. M. (2012). Correlative light and volume electron microscopy: using focused ion beam scanning electron microscopy to image transient events in model organisms. Methods Cell Biol., 111, 357–382. https://doi.org/10.1016/B978-0-12-416026-2.00018-2

Cabrol, N. A., Wettergreen, D., Warren-Rhodes, K., Grin, E. A., Moersch, J., Diaz, G. C., Cockell, C. S., Coppin, P., Demergasso, C., … Wyatt, M. (2007). Life in the Atacama: searching for life with rovers (science overview). J. Geophys. Res., 112(G4), G04S02. https://doi.org/10.1029/2006jg000298

Cabrol, N. A. (2016). Alien mindscapes-a perspective on the search for extraterrestrial intelligence. Astrobiology, 16(9), 661–676. https://doi.org/10.1089/ast.2016.1536

Cabrol, N. A. (2018). The coevolution of life and environment on Mars: an ecosystem perspective on the robotic exploration of biosignatures. Astrobiology, 18(1), 1–27. https://doi.org/10.1089/ast.2017.1756

Cámara, B., Souza-Egipsy, V., Ascaso, C., Artieda, O., De Los Ríos, A., and Wierzchos, J. (2016). Biosignatures and microbial fossils in endolithic microbial communities colonizing Ca-sulfate crusts in the Atacama Desert. Chem. Geol., 443, 22–31. https://doi.org/10.1016/j.chemgeo.2016.09.019

Carrier, B. L., Beaty, D. W., Meyer, M. A., Blank, J. G., Chou, L., DasSarma, S., Des Marais, D. J., Eigenbrode, J. L., Grefenstette, N., … Xu, J. (2020). Mars extant life: what's next? Conference report. Astrobiology, 20(6), 785–814. https://doi.org/10.1089/ast.2020.2237

Carter, J., Poulet, F., Bibring, J. P., Mangold, N., and Murchie, S. (2013). Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res., 118(4), 831–858. https://doi.org/10.1029/2012je004145

Castro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E., Rubins, K. H., McIntyre, A. B. R., Dworkin, J. P., Lupisella, M. L., Smith, D. J., … Burton, A. S. (2017). Nanopore DNA sequencing and genome assembly on the international space station. Sci. Rep., 7(1), 18022. https://doi.org/10.1038/s41598-017-18364-0

Chan, M. A., Beitler, B., Parry, W. T., Ormö, J., and Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature, 429(6993), 731–734. https://doi.org/10.1038/nature02600

Chemtob, S. M., Jolliff, B. L., Rossman, G. R., Eiler, J. M., and Arvidson, R. E. (2010). Silica coatings in the Ka'u Desert, Hawaii, a Mars analog terrain: a micromorphological, spectral, chemical, and isotopic study. J. Geophys. Res., 115(E4), E04001. https://doi.org/10.1029/2009je003473

Cheng, Z. Y., Xiao, L., Wang, H. M., and Huang, T. (2021). Distribution characteristics of lipids from salt sediments in Qaidam Basin and their astrobiological significance. Sci. China Earth Sci., 65(1), 156–166. https://doi.org/10.1007/s11430-021-9812-2

Christensen, P. R. (2006). Water at the poles and in permafrost regions of Mars. Elements, 2(3), 151–155. https://doi.org/10.2113/gselements.2.3.151

Cleland, C. E., and Chyba, C. F. (2002). Defining 'life'. Orig. Life Evol. Biosph., 32(4), 387–393. https://doi.org/10.1023/A:1020503324273

Cockell, C. S., Osinski, G., Sapers, H., Pontefract, A., and Parnell, J. (2020). Microbial life in impact craters. Curr. Issues Mol. Biol., 38, 75–102. https://doi.org/10.21775/cimb.038.075

Connerney, J. E. P., Acuña, M. H., Ness, N. F., Kletetschka, G., Mitchell, D. L., Lin, R. P., and Reme, H. (2005). Tectonic implications of Mars crustal magnetism. Proc. Natl. Acad. Sci. USA, 102(42), 14970–14975. https://doi.org/10.1073/pnas.0507469102

Cordero, R. R., Damiani, A., Jorquera, J., Sepúlveda, E., Caballero, M., Fernandez, S., Feron, S., Llanillo, P. J., Carrasco, J., … Labbe, F. (2018). Ultraviolet radiation in the Atacama Desert. Antonie Van Leeuwenhoek, 111(8), 1301–1313. https://doi.org/10.1007/s10482-018-1075-z

Cottin, H., Kotler, J. M., Billi, D., Cockell, C., Demets, R., Ehrenfreund, P., Elsaesser, A., d'Hendecourt, L., van Loon, J. J. W. A., … Klamm, B. A. (2017). Space as a tool for astrobiology: review and recommendations for experimentations in earth orbit and beyond. Space Sci. Rev., 209(1), 83–181. https://doi.org/10.1007/s11214-017-0365-5

Cottin, H., and Rettberg, P. (2019). EXPOSE-R2 on the international space station (2014-2016): results from the PSS and BOSS astrobiology experiments. Astrobiology, 19(8), 975–978. https://doi.org/10.1089/ast.2019.0625

Craddock, R. A., Irwin, R. P., Williams, R., Swanson, D., Howard, A. D., Quantin, C., Kuzmin, R., and Zimbelman, J. R. (2005). The geology of the Ka'u Desert, Hawaii as a Mars analog. In Proceedings of American Geophysical Union, Fall Meeting 2005 (pp. H33C-1402). AGU. San Francisco, California

Cronin, L., and Walker, S. I. (2016). Beyond prebiotic chemistry: what dynamic network properties allow the emergence of life?. Science, 352(6290), 1174−1175. https://doi.org/10.1126/science.aaf6310

Cruz, M. I., and Chadwick, C. (2000). A Mars polar lander failure assessment. In Proceedings of Atmospheric Flight Mechanics Conference (pp. 4118). Denver, USA: AIAA. https://doi.org/10.2514/6.2000-4118

Cubillos, C. F., Aguilar, P., Grágeda, M., and Dorador, C. (2018). Microbial communities from the world's largest lithium reserve, salar de atacama, Chile: life at high LiCl concentrations. J. Geophys. Res., 123(12), 3668–3681. https://doi.org/10.1029/2018jg004621

Davila, A. F., Fairén, A. G., Gago-Duport, L., Stoker, C., Amils, R., Bonaccorsi, R., Zavaleta, J., Lim, D., Schulze-Makuch, D., and McKay, C. P. (2008). Subsurface formation of oxidants on Mars and implications for the preservation of organic biosignatures. Earth Planet. Sci. Lett., 272(1-2), 456–463. https://doi.org/10.1016/j.jpgl.2008.05.015

de la Torre Noetzel, R., Ortega García, M. V., Miller, A. Z., Bassy, O., Granja, C., Cubero, B., Jordão, L., Martinez Frías, J., Rabbow, E., … De Vera, J. P. P. (2020). Lichen vitality after a space flight on board the EXPOSE-R2 facility outside the international space station: results of the biology and Mars experiment. Astrobiology, 20(5), 583–600. https://doi.org/10.1089/ast.2018.1959

Dickinson, W. W., and Rosen, M. R. (2003). Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology, 31(3), 199–202. https://doi.org/10.1130/0091-7613(2003)031<0199:Apaafw>2.0.Co;2

Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., O'Neil, J., and Little, C. T. S. (2017). Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature, 543(7643), 60–64. https://doi.org/10.1038/nature21377

Doran, P. T., McKay, C. P., Clow, G. D., Dana, G. L., Fountain, A. G., Nylen, T., and Lyons, W. B. (2002). Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000. J. Geophys. Res., 107(D24), 4772. https://doi.org/10.1029/2001jd002045

Duxbury, N. S., Zotikov, I. A., Nealson, K. H., Romanovsky, V. E., and Carsey, F. D. (2001). A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars. J. Geophys. Res., 106(E1), 1453–1462. https://doi.org/10.1029/2000je001254

Edwards, H. G. M., Vandenabeele, P., Jorge-Villar, S. E., Carter, E. A., Perez, F. R., and Hargreaves, M. D. (2007a). The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 68(4), 1133–1137. https://doi.org/10.1016/j.saa.2006.12.080

Edwards, H. G. M., Villar, S. E. J., Pullan, D., Hargreaves, M. D., Hofmann, B. A., and Westall, F. (2007b). Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study. J. Raman Spectrosc., 38(10), 1352–1361. https://doi.org/10.1002/jrs.1775

Ewing, S. A., Michalski, G., Thiemens, M., Quinn, R. C., Macalady, J. L., Kohl, S., Wankel, S. D., Kendall, C., McKay, C. P., and Amundson, R. (2007). Rainfall limit of the N cycle on Earth. Global Biogeochem. Cycles, 21(3), GB3009. https://doi.org/10.1029/2006gb002838

Fairén, A. G., Davila, A. F., Lim, D., Bramall, N., Bonaccorsi, R., Zavaleta, J., Uceda, E. R., Stoker, C., Wierzchos, J., … McKay, C. P. (2010). Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology, 10(8), 821–843. https://doi.org/10.1089/ast.2009.0440

Farley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., Hand, K., Goreva, Y., Herd, C. D. K., … Wiens, R. C. (2020). Mars 2020 mission overview. Space Sci. Rev., 216(8), 142. https://doi.org/10.1007/s11214-020-00762-y

Faucher, B. F., Lacelle, D. L., Davila, A. D., Pollard, W. P., and McKay, C. P. M. (2016). Abundance, distribution and cycling of organic carbon and nitrogen in University Valley (McMurdo dry valleys of Antarctica) permafrost soils with differing ground thermal and moisture conditions: analogue to C-N cycle on Mars. In Proceedings of Biosignature Preservation and Detection in Mars Analog Environments. Lake Tahoe, Nevada. LPI Contribution No. 1912, id.2046

Fernández-Remolar, D., Gómez-Elvira, J., Gómez, F., Sebastian, E., Martı́in, J., Manfredi, J. A., Torres, J., Kesler, C. G., and Amils, R. (2004). The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars. Planet. Space Sci., 52(1-3), 239–248. https://doi.org/10.1016/j.pss.2003.08.027

Fernández-Remolar, D. C., Morris, R. V., Gruener, J. E., Amils, R., and Knoll, A. H. (2005). The Río Tinto basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240(1), 149–167. https://doi.org/10.1016/j.jpgl.2005.09.043

Fernández-Remolar, D. C., Chong-Díaz, G., Ruíz-Bermejo, M., Harir, M., Schmitt-Kopplin, P., Tziotis, D., Gomez-Ortíz, D., Garcia-Villadangos, M., Martín-Redondo, M. P., … Parro, V. (2013). Molecular preservation in halite- and perchlorate-rich hypersaline subsurface deposits in the Salar Grande basin (Atacama Desert, Chile): implications for the search for molecular biomarkers on Mars. J. Geophys. Res., 118(2), 922–939. https://doi.org/10.1002/jgrg.20059

Fernández-Remolar, D. C., Carrizo, D., Harir, M., Huang, T., Amils, R., Schmitt-Kopplin, P., Sánchez-García, L., Gomez-Ortiz, D., and Malmberg, P. (2021). Unveiling microbial preservation under hyperacidic and oxidizing conditions in the Oligocene Rio Tinto deposit. Sci. Rep., 11(1), 21543. https://doi.org/10.1038/s41598-021-00730-8

Fisk, M. R., Storrie-Lombardi, M. C., Douglas, S., Popa, R., McDonald, G., and Di Meo-Savoie, C. (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem. Geophys. Geosyst., 4(12), 1103. https://doi.org/10.1029/2002gc000387

Fountain, A. G., Nylen, T. H., Monaghan, A., Basagic, H. J., and Bromwich, D. (2010). Snow in the McMurdo Dry Valleys, Antarctica. Int. J. Climatol., 30(5), 633–642. https://doi.org/10.1002/joc.1933

Friel, J. J., and Lyman, C. E. (2006). X-ray mapping in electron-beam instruments. Microsc. Microanal., 12(1), 2–25. https://doi.org/10.1017/S1431927606060211

Gholizadeh, A., Neumann, C., Chabrillat, S., van Wesemael, B., Castaldi, F., Borůvka, L., Sanderman, J., Klement, A., and Hohmann, C. (2021). Soil organic carbon estimation using VNIR-SWIR spectroscopy: the effect of multiple sensors and scanning conditions. Soil Tillage Res., 211, 105017. https://doi.org/10.1016/j.still.2021.105017

Gibney, E. (2016). Mars launch to test collaboration between Europe and Russia. Nature, 531(7594), 288–289. https://doi.org/10.1038/nature.2016.19547

Glass, B., Cannon, H., Branson, M., Hanagud, S., and Paulsen, G. (2008). DAME: planetary-prototype drilling automation. Astrobiology, 8(3), 653–664. https://doi.org/10.1089/ast.2007.0148

Glavin, D. P., Bada, J. L., Brinton, K. L., and McDonald, G. D. (1999). Amino acids in the Martian meteorite Nakhla. Proc. Natl. Acad. Sci. USA, 96(16), 8835–8838. https://doi.org/10.1073/pnas.96.16.8835

Góes-Neto, A., Kukharenko, O., Orlovska, I., Podolich, O., Imchen, M., Kumavath, R., Kato, R. B., De Carvalho, D. S., Tiwari, S., … Barh, D. (2021). Shotgun metagenomic analysis of kombucha mutualistic community exposed to Mars-like environment outside the International Space Station. Environ. Microbiol., 23(7), 3727–3742. https://doi.org/10.1111/1462-2920.15405

Gogoi, A., Konwer, S., and Zhuo, G. Y. (2021). Polarimetric measurements of surface chirality based on linear and nonlinear light scattering. Front. Chem., 8, 611833. https://doi.org/10.3389/fchem.2020.611833

Golombek, M. P. (1997). The Mars pathfinder mission. J. Geophys. Res., 102(E2), 3953–3965. https://doi.org/10.1029/96je02805

Golombek, M. P., Grant, J. A., Parker, T. J., Kass, D. M., Crisp, J. A., Squyres, S. W., Haldemann, A. F. C., Adler, M., Lee, W. J., … Rice, J. W. Jr. (2003). Selection of the Mars Exploration Rover landing sites. J. Geophys. Res., 108(E12), 8072. https://doi.org/10.1029/2003je002074

Gómez, F., Mateo-Martí, E., Prieto-Ballesteros, O., Martín-Gago, J., and Amils, R. (2010). Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions. Icarus, 209(2), 482–487. https://doi.org/10.1016/j.icarus.2010.05.027

Gómez, F. (2011). Terrestrial analog. In M. Gargaud, et al. (Eds.), Encyclopedia of Astrobiology, Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-11274-4_1606

Gómez, F., Cavalazzi, B., Rodríguez, N., Amils, R., Ori, G. G., Olsson-Francis, K., Escudero, C., Martínez, J. M., and Miruts, H. (2019). Ultra-small microorganisms in the polyextreme conditions of the Dallol volcano, Northern Afar, Ethiopia. Sci. Rep., 9(1), 7907. https://doi.org/10.1038/s41598-019-44440-8

Green, J. (2011). Academic aspects of lunar water resources and their relevance to lunar protolife. Int. J. Mol. Sci., 12(9), 6051–6076. https://doi.org/10.3390/ijms12096051

Green, J., Hoehler, T., Neveu, M., Domagal-Goldman, S., Scalice, D., and Voytek, M. (2021). Call for a framework for reporting evidence for life beyond Earth. Nature, 598(7882), 575–579. https://doi.org/10.1038/s41586-021-03804-9

Greenfield, S. R., Tighe, S. W., Bai, Y., Goerlitz, D. S., von Turkovich, M., Taatjes, D. J., Dragon, J. A., and Johnson, S. S. (2020). Life and its traces in Antarctica's McMurdo Dry Valley paleolakes: a survey of preservation. Micron, 131, 102818. https://doi.org/10.1016/j.micron.2019.102818

Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., Blake, D. F., Conrad, P., Edgett, K. S., … Wiens, R. C. (2012). Mars science laboratory mission and science investigation. Space Sci. Rev., 170(1), 5–56. https://doi.org/10.1007/s11214-012-9892-2

Hallsworth, J. E., Mancinelli, R. L., Conley, C. A., Dallas, T. D., Rinaldi, T., Davila, A. F., Benison, K. C., Rapoport, A., Cavalazzi, B., … Madigan, M. T. (2021). Astrobiology of life on earth. Environ. Microbiol., 23(7), 3335–3344. https://doi.org/10.1111/1462-2920.15499

Hausrath, E. M., Treiman, A. H., Vicenzi, E., Bish, D. L., Blake, D., Sarrazin, P., Hoehler, T., Midtkandal, I., Steele, A., and Brantley, S. L. (2008). Short- and long-term olivine weathering in Svalbard: implications for Mars. Astrobiology, 8(6), 1079–1092. https://doi.org/10.1089/ast.2007.0195

Hays, L. (2015). NASA Astrobiology Strategy 2015. NASA 8. Available at: https://astrobiology.nasa.gov/nai/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf

Hays, L. E., Graham, H. V., Marais, D. J. D., Hausrath, E. M., Horgan, B., McCollom, T. M., Parenteau, M. N., Potter-Mcintyre, S. L., Williams, A. J., and Lynch, K. L. (2017). Biosignature preservation and detection in Mars analog environments. Astrobiology, 17(4), 363–400. https://doi.org/10.1089/ast.2016.1627

Head, J. W., and Marchant, D. R. (2003). Cold-based mountain glaciers on Mars: western Arsia Mons. Geology, 31(7), 641–644. https://doi.org/10.1130/0091-7613(2003)031<0641:Cmgomw>2.0.Co;2

Heller, R. (2020). Habitability is a continuous property of nature. Nat. Astron., 4(4), 294–295. https://doi.org/10.1038/s41550-020-1063-x

Hereford, R., Webb, R. H., and Longpré, C. I. (2006). Precipitation history and ecosystem response to multidecadal precipitation variability in the Mojave Desert region, 1893-2001. J. Arid Environ., 67 Suppl, 13–34. https://doi.org/10.1016/j.jaridenv.2006.09.019

Hess, S. L., Henry, R. M., and Tillman, J. E. (1979). The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap. J. Geophys. Res., 84(B6), 2923–2927. https://doi.org/10.1029/JB084iB06p02923

Horneck, G., Klaus, D. M., and Mancinelli, R. L. (2010). Space microbiology. Microbiol. Mol. Biol. Rev., 74(1), 121–156. https://doi.org/10.1128/MMBR.00016-09

Horowitz, N. H., and Miller, S. L. (1962). Current theories on the origin of life. In L. Zechmeister (Ed.), Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products (pp. 423-459). Vienna: Springer. https://doi.org/10.1007/978-3-7091-7153-0_10

Hu, R. Y., and Thomas, T. B. (2022). A nitrogen-rich atmosphere on ancient Mars consistent with isotopic evolution models. Nat. Geosci., 15(2), 106–111. https://doi.org/10.1038/s41561-021-00886-y

Hughes, S. S., Haberle, C. W., Kobs Nawotniak, S. E., Sehlke, A., Garry, W. B., Elphic, R. C., Payler, S. J., Stevens, A. H., Cockell, C. S., … Lim, D. S. S. (2019). Basaltic terrains in idaho and hawai'i as planetary analogs for Mars geology and astrobiology. Astrobiology, 19(3), 260–283. https://doi.org/10.1089/ast.2018.1847

Inglebert, R. L., Klossa, B., Lorin, J. C., and Thomas, R. (1995). Proposed in situ secondary ion mass spectrometry on Mars. Planet. Space Sci., 43(1-2), 129–137. https://doi.org/10.1016/0032-0633(95)93404-2

Jackson, W. A., Davila, A. F., Estrada, N., Lyons, W. B., Coates, J. D., and Priscu, J. C. (2012). Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Geochim. Cosmochim. Acta, 98, 19–30. https://doi.org/10.1016/j.gca.2012.09.014

Jahromi, K. E., Nematollahi, M., Pan, Q., Abbas, M. A., Cristescu, S. M., Harren, F. J. M., and Khodabakhsh, A. (2020). Sensitive multi-species trace gas sensor based on a high repetition rate mid-infrared supercontinuum source. Opt. Express, 28(18), 26091–26101. https://doi.org/10.1364/Oe.396884

Johnson, J. C., Johnson, P. A., and Mardon, A. A. (2019). Soil sampling with nanoscale vibration sensors for on-site detection of microorganisms. In Proceedings of Mars Extant Life: What's Next?. Carlsbad, New Mexico. LPI Contribution No. 2108, 2019, id.5079

Kaltenegger, L., Selsis, F., Fridlund, M., Lammer, H., Beichman, C., Danchi, W., Eiroa, C., Henning, T., Herbst, T., … White, G. J. (2010). Deciphering spectral fingerprints of habitable exoplanets. Astrobiology, 10(1), 89–102. https://doi.org/10.1089/ast.2009.0381

Khan, S., Newport, D., and Le Calvé, S. (2019). Gas detection using portable deep-UV absorption spectrophotometry: a review. Sensors (Basel), 19(23), 5210. https://doi.org/10.3390/s19235210

Kite, E. S., Sneed, J., Mayer, D. P., and Wilson, S. A. (2017). Persistent or repeated surface habitability on Mars during the late Hesperian-Amazonian. Geophys. Res. Lett., 44(9), 3991–3999. https://doi.org/10.1002/2017gl072660

Klein, H. P., Horowitz, N. H., Levin, G. V., Oyama, V. I., Lederberg, J., Rich, A., Hubbard, J. S., Hobby, G. L., Straat, P. A., … Johnson, R. D. (1976). The viking biological investigation: preliminary results. Science, 194(4260), 99–105. https://doi.org/10.1126/science.194.4260.99

Koeppel, Trilling, D., Koch, G., Schwartz, E., and Edwards, C. S. (2019). Testing methods for detection of unfamiliar life in martian regolith. In Proceedings of Mars Extant Life: What's Next?. Carlsbad, New Mexico. LPI Contribution No. 2108, 2019, id.5100

Koike, M., Nakada, R., Kajitani, I., Usui, T., Tamenori, Y., Sugahara, H., and Kobayashi, A. (2020). In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nat. Commun., 11(1), 1988. https://doi.org/10.1038/s41467-020-15931-4

Kong, F. J., Zheng, M. P., Hu, B., Wang, A. L., Ma, N. N., and Sobron, P. (2018). Dalangtan saline playa in a hyperarid region on tibet plateau: I. Evolution and environments. Astrobiology, 18(10), 1243−1253. https://doi.org/10.1089/ast.2018.1830

Lauro, S. E., Pettinelli, E., Caprarelli, G., Guallini, L., Rossi, A. P., Mattei, E., Cosciotti, B., Cicchetti, A., Soldovieri, F., … Orosei, R. (2021). Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat. Astron., 5(1), 63–70. https://doi.org/10.1038/s41550-020-1200-6

Lee, K. S., Landry, Z., Pereira, F. C., Wagner, M., Berry, D., Huang, W. E., Taylor, G. T., Kneipp, J., Popp, J., … and Stocker, R. (2021). Raman microspectroscopy for microbiology. Nat. Rev. Methods Primers, 1(1), 80. https://doi.org/10.1038/s43586-021-00075-6

Levin, G. V., and Straat, P. A. (1977). Recent results from the viking labeled release experiment on Mars. J. Geophys. Res., 58(28), 4663–4667. https://doi.org/10.1029/JS082i028p04663

Li, X. L., He, Y., Wu, C. Q., and Sun, D. W. (2007). Nondestructive measurement and fingerprint analysis of soluble solid content of tea soft drink based on Vis/NIR spectroscopy. J. Food Eng., 82(3), 316–323. https://doi.org/10.1016/j.jfoodeng.2007.02.042

Lin, W. (2020). Life in the near space and implications for astrobiology. Chin. Sci. Bull. (in Chinese with English abstract), 65(14), 1297–1304. https://doi.org/10.1360/TB-2019-0805

Lin, W., Li, Y. L., Wang, G. H., and Pan, Y. X. (2020). Overview and perspectives of Astrobiology. Chin. Sci. Bull. (in Chinese with English abstract), 65(5), 380–391. https://doi.org/10.1360/TB-2019-0396

Lin, W., He, F., Zhang, W. S., Yao, Z. H., Shen, J. X., Ren, Z. P., Yuan, H., Cai, R., Wei, Y., and Pan, Y. X. (2022). Astrobiology at altitude in earth’s near space. Nat. Astron., 6(2), 289. https://doi.org/10.1038/s41550-022-01606-1

Lin, Y. W., Chiu, T. C., and Chang, H. T. (2003). Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis. J. Chromatogr. B, 793(1), 37–48. https://doi.org/10.1016/S1570-0232(03)00363-5

Liu, J., Zhang, W. S., He, K., Liu, L., Wang, C., Jiang, Y. D., Ma, S. J., Tian, J. S., Li, Y., … Lin, W. (2022). Survival of the magnetotactic bacterium Magnetospirillum gryphiswaldense exposed to Earth’s lower near space. Sci. Bull. 67(13), 1335−1339. https://doi.org/10.1016/j.scib.2022.03.005

Liu, Y., Fischer, W. W., Ma, C., Beckett, J. R., Tschauner, O., Guan, Y. B., Lingappa, U. F., Webb, S. M., Prakapenka, V. B., … Agee, C. B. (2021). Manganese oxides in Martian meteorites Northwest Africa (NWA) 7034 and 7533. Icarus, 364, 114471. https://doi.org/10.1016/j.icarus.2021.114471

Liu, Y., Wu, X., Zhao, Y. Y. S., Pan, L., Wang, C., Liu, J., Zhao, Z. X., Zhou, X., Zhang, C. L., … Zou, Y. L. (2022). Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Sci. Adv., 8(19), eabn8555. https://doi.org/10.1126/sciadv.abn8555

Loiselle, L., McCraig, M. A., Dyar, M. D., Léveillé, R., Shieh, S. R., and Southam, G. (2018). A spectral comparison of jarosites using techniques relevant to the robotic exploration of biosignatures on Mars. Life (Basel), 8(4), 61. https://doi.org/10.3390/life8040061

Luisi, P. L. (1998). About various definitions of life. Orig. Life Evol. Biosph., 28(4), 613–622. https://doi.org/10.1023/A:1006517315105

Lybrand, R. A., Michalski, G., Graham, R. C., and Parker, D. R. (2013). The geochemical associations of nitrate and naturally formed perchlorate in the Mojave Desert, California, USA. Geochim. Cosmochim. Acta, 104, 136–147. https://doi.org/10.1016/j.gca.2012.10.028

Mangold, N. (2021). Intermittent warmth on young Mars. Nat. Geosci., 14(3), 112–113. https://doi.org/10.1038/s41561-021-00700-9

Manoharan, R., Ghiamati, E., Dalterio, R. A., Britton, K. A., Nelson, W. H., and Sperry, J. F. (1990). UV resonance raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate. J. Microbiol. Methods, 11(1), 1–15. https://doi.org/10.1016/0167-7012(90)90042-5

Marais, D. J. D., Nuth III, J. A., Allamandola, L. J., Boss, A. P., Farmer, J. D., Hoehler, T. M., Jakosky, B. M., Meadows, V. S., Pohorille, A., … Spormann, A. M. (2008). The NASA astrobiology roadmap. Astrobiology, 8(4), 715–730. https://doi.org/10.1089/ast.2008.0819

Marchi, S., Bottke, W. F., Elkins-Tanton, L. T., Bierhaus, M., Wuennemann, K., Morbidelli, A., and Kring, D. A. (2014). Widespread mixing and burial of earth's Hadean crust by asteroid impacts. Nature, 511(7511), 578–582. https://doi.org/10.1038/nature13539

Mari, N., Riches, A. J. V., Hallis, L. J., Marrocchi, Y., Villeneuve, J., Gleissner, P., Becker, H., and Lee, M. R. (2019). Syneruptive incorporation of martian surface sulphur in the nakhlite lava flows revealed by S and Os isotopes and highly siderophile elements: implication for mantle sources in Mars. Geochim. Cosmochim. Acta, 266, 416–434. https://doi.org/10.1016/j.gca.2019.05.025

Mckay, C. P., Friedmann, E. I., Gomez-Silva, B., Cáceres-Villanueva, L., Andersen, D. T., and Landheim, R. (2003). Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997-1998. Astrobiology, 3(2), 393-406. https://doi.org/10.1089/153110703769016460

McKay, D. S., Gibson, E. K. Jr., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., and Zare, R. N. (1996). Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science, 273(5277), 924−930. https://doi.org/10.1126/science.273.5277.924

Meadows, V. S., Reinhard, C. T., Arney, G. N., Parenteau, M. N., Schwieterman, E. W., Domagal-Goldman, S. D., Lincowski, A. P., Stapelfeldt, K. R., Rauer, H., … Lee Grenfell, J. (2018). Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology, 18(6), 630–662. https://doi.org/10.1089/ast.2017.1727

Mellon, M. T., Feldman, W. C., and Prettyman, T. H. (2004). The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169(2), 324–340. https://doi.org/10.1016/j.icarus.2003.10.022

Miao, Y., Fang, X., Herrmann, M., Wu, F., Zhang, Y., and Liu, D. (2011). Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol., 299(1-2), 30-38. https://doi.org/10.1016/j.palaeo.2010.10.026

Michalski, G., Böhlke, J. K., and Thiemens, M. (2004). Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim. Cosmochim. Acta, 68(20), 4023–4038. https://doi.org/10.1016/j.gca.2004.04.009

Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117(3046), 528–529. https://doi.org/10.1126/science.117.3046.528

Mittelholz, A., Morschhauser, A., Johnson, C. L., Langlais, B., Lillis, R. J., Vervelidou, F., and Weiss, B. P. (2018). The Mars 2020 candidate landing sites: A magnetic field perspective. Earth Space Sci., 5(9), 410−424. https://doi.org/10.1029/2018EA000420

Monaghan, A. J., Bromwich, D. H., Powers, J. G., and Manning, K. W. (2005). The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. J. Climate, 18(8), 1174–1189. https://doi.org/10.1175/Jcli3336.1

Moreras-Marti, A., Fox-Powell, M., Stueeken, E., Di Rocco, T., Galloway, T., Osinski, G. R., Cousins, C. R., and Zerkle, A. L. (2021). Quadruple sulfur isotope biosignatures from terrestrial Mars analogue systems. Geochim. Cosmochim. Acta, 308, 157–172. https://doi.org/10.1016/j.gca.2021.06.007

Mormile, M. R., Hong, B. Y., and Benison, K. C. (2009). Molecular analysis of the microbial communities of Mars analog lakes in Western Australia. Astrobiology, 9(10), 919–930. https://doi.org/10.1089/ast.2008.0293

Morse, A. D., Lainez, A., and Howard, K. T. (2011). Exploration of lava tubes in the Teide National Park, a martian analog. In Proceedings of the First International Planetary Caves Workshop. Carlsbad, New Mexico.

Nadeau, J. L., Perreault, N. N., Niederberger, T. D., Whyte, L. G., Sun, H. J., and Leon, R. (2008). Fluorescence microscopy as a tool for in situ life detection. Astrobiology, 8(4), 859–874. https://doi.org/10.1089/ast.2007.0043

Navarro-González, R., Rainey, F. A., Molina, P., Bagaley, D. R., Hollen, B. J., De La Rosa, J., Small, A. M., Quinn, R. C., Grunthaner, F. J., … McKay, C. P. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302(5647), 1018–1021. https://doi.org/10.1126/science.1089143

Neveu, M., Hays, L. E., Voytek, M. A., New, M. H., and Schulte, M. D. (2018). The ladder of life detection. Astrobiology, 18(11), 1375–1402. https://doi.org/10.1089/ast.2017.1773

Newman, D. K., Neubauer, C., Ricci, J. N., Wu, C. H., and Pearson, A. (2016). Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers. Annu. Rev. Earth Planet. Sci., 44, 493–522. https://doi.org/10.1146/annurev-earth-050212-123958

Norris, D. J. (2007). Materials science: silicon life forms. Nature, 446(7132), 146–147. https://doi.org/10.1038/446146a

Orgel, C., Kereszturi, Á., Váczi, T., Groemer, G., and Sattler, B. (2014). Scientific results and lessons learned from an integrated crewed Mars exploration simulation at the Rio Tinto Mars analogue site. Acta Astronaut., 94(2), 736–748. https://doi.org/10.1016/j.actaastro.2013.09.014

Oro, J. (1965). In: S. W. Fox (Ed.), The Origins of Prebiological Systems and of Their Molecular Matrices (pp. 137). New York: Academic Press.

Orosei, R., Lauro, S. E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., Di Paolo, F., Flamini, E., Mattei, E., … Seu, R. (2018). Radar evidence of subglacial liquid water on Mars. Science, 361(6401), 490–493. https://doi.org/10.1126/science.aar7268

Osinski, G. R., Cockell, C. S., Pontefract, A., and Sapers, H. M. (2020). The role of meteorite impacts in the origin of life. Astrobiology, 20(9), 1121–1149. https://doi.org/10.1089/ast.2019.2203

Palumbo, A. M., Head, J. W., and Wilson, L. (2020). Rainfall on Noachian Mars: nature, timing, and influence on geologic processes and climate history. Icarus, 347, 113782. https://doi.org/10.1016/j.icarus.2020.113782

Pandey, S., Clarke, J., Nema, P., Bonaccorsi, R., Som, S., Sharma, M., Phartiyal, B., Rajamani, S., Mogul, R., … Bapat, N. (2020). Ladakh: diverse, high-altitude extreme environments for off-earth analogue and astrobiology research. Int. J. Astrobiol., 19(1), 78–98. https://doi.org/10.1017/S1473550419000119

Parnell, J., Lee, P., Cockell, C. S., and Osinski, G. R. (2004). Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int. J. Astrobiol., 3(3), 247–256. https://doi.org/10.1017/S1473550404001995

Parro, V., Rodríguez-Manfredi, J. A., Briones, C., Compostizo, C., Herrero, P. L., Vez, E., Sebastián, E., Moreno-Paz, M., García-Villadangos, M., … Gómez-Elvira, J. (2005). Instrument development to search for biomarkers on Mars: terrestrial acidophile, iron-powered chemolithoautotrophic communities as model systems. Planet. Space Sci., 53(7), 729–737. https://doi.org/10.1016/j.pss.2005.02.003

Pattrick, R. A. D., van der Laan, G., Henderson, C. M. B., Kuiper, P., Dudzik, E., and Vaughan, D. J. (2002). Cation site occupancy in spinel ferrites studied by X-ray magnetic circular dichroism: developing a method for mineralogists. Eur. J. Mineral., 14(6), 1095–1102. https://doi.org/10.1127/0935-1221/2002/0014-1095

Payne, A. C., Chiang, Z. D., Reginato, P. L., Mangiameli, S. M., Murray, E. M., Yao, C. C., Markoulaki, S., Earl, A. S., Labade, A. S., … Chen, F. (2021). In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science, 371(6532), eaay3446. https://doi.org/10.1126/science.aay3446

Peretyazhko, T. S., Sutter, B., Morris, R. V., Agresti, D. G., Le, L., and Ming, D. W. (2016). Fe/Mg smectite formation under acidic conditions on early Mars. Geochim. Cosmochim. Acta, 173, 37–49. https://doi.org/10.1016/j.gca.2015.10.012

Petkowski, J. J., Bains, W., and Seager, S. (2020). On the Potential of Silicon as a Building Block for Life. Life (Basel), 10(6), 84. https://doi.org/10.3390/life10060084

Pilcher, C. B. (2003). Biosignatures of early earths. Astrobiology, 3(3), 471–486. https://doi.org/10.1089/153110703322610582

Pollard, W., Haltigin, T., Whyte, L., Niederberger, T., Andersen, D., Omelon, C., Nadeau, J., Ecclestone, M., and Lebeuf, M. (2009). Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island, Canadian High Arctic. Planet. Space Sci., 57(5-6), 646–659. https://doi.org/10.1016/j.pss.2009.01.008

Pross, A. (2016). What is Life?: How Chemistry Becomes Biology (2nd ed). Oxford: Oxford University Press.

Pullan, D., Westall, F., Hofmann, B. A., Parnell, J., Cockell, C. S., Edwards, H. G. M., Villar, S. E. J., Schröder, C., Cressey, G., … Klingelhöfer, G. (2008). Identification of morphological biosignatures in martian analogue field specimens using in situ planetary instrumentation. Astrobiology, 8(1), 119–156. https://doi.org/10.1089/ast.2006.0037

Rabbow, E., Rettberg, P., Parpart, A., Panitz, C., Schulte, W., Molter, F., Jaramillo, E., Demets, R., Weiß, P., and Willnecker, R. (2017). EXPOSE-R2: the astrobiological ESA mission on board of the international space station. Front. Microbiol., 8, 1533. https://doi.org/10.3389/fmicb.2017.01533

Rasuk, M. C., Kurth, D., Flores, M. R., Contreras, M., Novoa, F., Poire, D., and Farias, M. E. (2014). Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in salar de llamara in atacama desert. Microb. Ecol., 68(3), 483–494. https://doi.org/10.1007/s00248-014-0431-4

Reid, R. P., Oehlert, A. M., Suosaari, E. P., Demergasso, C., Chong, G., Escudero, L. V., Piggot, A. M., Lascu, I., and Palma, A. T. (2021). Electrical conductivity as a driver of biological and geological spatial heterogeneity in the Puquios, Salar de Llamara, Atacama Desert, Chile. Sci. Rep., 11(1), 12769. https://doi.org/10.1038/s41598-021-92105-2

Rossel, R. A. V., McGlynn, R. N., and McBratney, A. B. (2006). Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma, 137(1-2), 70–82. https://doi.org/10.1016/j.geoderma.2006.07.004

Ruff, S. W., and Farmer, J. D. (2016). Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun., 7, 13554. https://doi.org/10.1038/ncomms13554

Rull, F., Maurice, S., Hutchinson, I., Moral, A., Perez, C., Diaz, C., Colombo, M., Belenguer, T., Lopez-Reyes, G., … The RLS Team. (2017). The Raman laser spectrometer for the ExoMars rover mission to Mars. Astrobiology, 17(6-7), 627–654. https://doi.org/10.1089/ast.2016.1567

Rull, F., Veneranda, M., Manrique-Martinez, J. A., Sanz-Arranz, A., Saiz, J., Medina, J., Moral, A., Perez, C., Seoane, L., … Lopez-Reyes, G. (2022). Spectroscopic study of terrestrial analogues to support rover missions to Mars–A Raman-centred review. Anal. Chim. Acta, 1209, 339003. https://doi.org/10.1016/j.aca.2021.339003

Ryan, C. H., Daly, M. G., Brady, A. L., Slater, G. F., and Lim, D. S. S. (2021). Organic material distribution in Mars-analog volcanic rocks, as determined with ultraviolet laser-induced fluorescence spectroscopy. Astrobiology, 21(8), 981–996. https://doi.org/10.1089/ast.2020.2379

Sánchez, F. J., Mateo-Marti, E., Raggio, J., Meeßen, J., Martínez-Frías, J., Sancho, L. G., Ott, S., and de la Torr, R. (2012). The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile. Planet. Space Sci., 72(1), 102–110. https://doi.org/10.1016/j.pss.2012.08.005

Santomartino, R., Waajen, A. C., de Wit, W., Nicholson, N., Parmitano, L., Loudon, C. M., Moeller, R., Rettberg, P., Fuchs, F. M., … Cockell, C. S. (2020). No effect of microgravity and simulated Mars gravity on final bacterial cell concentrations on the international space station: applications to space bioproduction. Front. Microbiol., 11, 579156. https://doi.org/10.3389/fmicb.2020.579156

Schowengerdt, F., Fox, R., Duke, M., Marzwell, N., and McKnight, B. (2007). PISCES: developing technologies for sustained human presence on the moon and Mars. In Proceedings of the AIAA SPACE 2007 Conference & Exposition (pp. 6293). Long Beach: AIAA.

Seelos, K. D., Arvidson, R. E., Jolliff, B. L., Chemtob, S. M., Morris, R. V., Ming, D. W., and Swayze, G. A. (2010). Silica in a Mars analog environment: Ka'u Desert, Kilauea Volcano, Hawaii. J. Geophys. Res., 115(E4), E00D15. https://doi.org/10.1029/2009je003347

Seneviratne, C. A., Ghorai, S., and Murray, K. K. (2016). Laser desorption sample transfer for gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom., 30(1), 89–94. https://doi.org/10.1002/rcm.7419

Shaner, S., Williams, A. J., Judge, L., Kivrak, L., and Zhuang, G. (2020). Lipid biosignature detection by TMSH thermochemolysis and pyrolysis GC-MS in the Mars-analog sediments of hyperarid qaidam Basin, China. In Proceedings of the American Geophysical Union, Fall Meeting 2020. AGU. Chicago, Illinois

Sharma, A. (2020). Magnetic circular dichroism in Archean atmosphere and asymmetric photolysis of biomolecules: enantiomeric excess of prebiotic sugar. J. Biol. Phys., 46(3), 283–295. https://doi.org/10.1007/s10867-020-09552-7

Shen, J. X., Zerkle, A. L., Stueeken, E. E., and Claire, M. W. (2019). Nitrates as a potential n supply for microbial ecosystems in a hyperarid Mars analog system. Life, 9(4), 79. https://doi.org/10.3390/life9040079

Shen, J. X. (2020). Phospholipid biomarkers in Mars-analogous soils of the atacama desert. Int. J. Astrobiol., 19(6), 505–514. https://doi.org/10.1017/S1473550420000294

Shen, J. X. (2021). D-Amino acid substituted peptides as potential alternatives of homochiral L-configurations. Amino Acids, 53(2), 265–280. https://doi.org/10.1007/s00726-021-02947-3

Shen, J. X., Wyness, A. J., Claire, M. W., and Zerkle, A. L. (2021). Spatial variability of microbial communities and salt distributions across a latitudinal aridity gradient in the atacama desert. Microb. Ecol., 82(2), 442–458. https://doi.org/10.1007/s00248-020-01672-w

Shen, J. X., Zerkle, A. L., and Claire, M. W. (2022). Nitrogen cycling and biosignatures in a hyperarid Mars analog environment. Astrobiology, 22(2), 127–142. https://doi.org/10.1089/ast.2021.0012

Shotwell, R. (2005). Phoenix—the first Mars Scout mission. Acta Astronaut., 57(2-8), 121–134. https://doi.org/10.1016/j.actaastro.2005.03.038

Siegbahn, M. (1962). X-ray spectroscopy. In E. E. Ewald (Ed.), Fifty Years of X-Ray Diffraction (pp. 265-276). Utrecht: International Union of Crystallography.

Simpson, A. C., Urbaniak, C., Bateh, J. R., Singh, N. K., Wood, J. M., Debieu, M., O'Hara, N. B., Houbraken, J., Mason, C. E., and Venkateswaran, K. (2021). Draft genome sequences of fungi isolated from the international space station during the microbial tracking-2 experiment. Microbiol. Resour. Announc., 10(37), e0075121. https://doi.org/10.1128/MRA.00751-21

Skoog, D. A., Holler, F. J., and Crouch, S. R. (2018). Principles of Instrumental Analysis (7th ed). Boston: Cengage Learning.

Smith, A. E. (2021). Mars: The Next Step. Boca Raton, FL: CRC Press.

Smith, D. J. (2013). Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology, 13(10), 981–990. https://doi.org/10.1089/ast.2013.1074

Soare, R. J., Conway, S. J., and Dohm, J. M. (2014). Possible ice-wedge polygons and recent landscape modification by "wet" periglacial processes in and around the Argyre impact basin, Mars. Icarus, 233, 214–228. https://doi.org/10.1016/j.icarus.2014.01.034

Sobron, P., and Wang, A. L. (2012). A planetary environment and analysis chamber (PEACh) for coordinated Raman-LIBS-IR measurements under planetary surface environmental conditions. J. Raman Spectrosc., 43(2), 212–227. https://doi.org/10.1002/jrs.3017

Soffen, G. A. (1977). The viking project. J. Geophys. Res., 82(28), 3959–3970. https://doi.org/10.1029/JS082i028p03959

Souza-Egipsy, V., Ormö, J., Beitler Bowen, B., Chan, M. A., and Komatsu, G. (2006). Ultrastructural study of iron oxide precipitates: implications for the search for biosignatures in the Meridiani hematite concretions, Mars. Astrobiology, 6(4), 527–545. https://doi.org/10.1089/ast.2006.6.527

Sparks, W., Hough, J. H., Germer, T. A., Robb, F., and Kolokolova, L. (2012). Remote sensing of chiral signatures on Mars. Planet. Space Sci., 72(1), 111–115. https://doi.org/10.1016/j.pss.2012.08.010

Sparks, W. B., Hough, J. H., and Bergeron, L. E. (2005). A search for chiral signatures on Mars. Astrobiology, 5(6), 737–748. https://doi.org/10.1089/ast.2005.5.737

Stern, J. C., Sutter, B., Freissinet, C., Navarro-González, R., McKay, C. P., Archer, P. D. Jr., Buch, A., Brunner, A. E., Coll, P., … The MSL Science Team. (2015). Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc. Natl. Acad. Sci. USA, 112(14), 4245–4250. https://doi.org/10.1073/pnas.1420932112

Stoker, C. R., Lemke, L. G., Mandell, H., McKay, D., George, J., Gomez-Elvira, J., Amils, R., Stevens, T., and Miller, D. (2003). Mars analog research and technology experiment (MARTE): a simulated Mars drilling mission to search for subsurface life at the Rio Tinto, Spain. In Proceedings of the 34th Annual Lunar and Planetary Science Conference. Citeseer. id.1076

Summons, R. E., Amend, J. P., Bish, D., Buick, R., Cody, G. D., Des Marais, D. J., Dromart, G., Eigenbrode, J. L., Knoll, A. H., and Sumner, D. Y. (2011). Preservation of martian organic and environmental records: final report of the Mars biosignature working group. Astrobiology, 11(2), 157–181. https://doi.org/10.1089/ast.2010.0506

Sun, Y., Li, Y. L., Li, L., and He, H. P. (2019). Preservation of cyanobacterial uvr-shielding pigment scytonemin in carbonate ooids formed in pleistocene salt lakes in the Qaidam Basin, Tibetan Plateau. Geophys. Res. Lett., 46(17-18), 10375–10383. https://doi.org/10.1029/2019gl083321

Tebo, B. M., Davis, R. E., Anitori, R. P., Connell, L. B., Schiffman, P., and Staudigel, H. (2015). Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front. Microbiol., 6, 179. https://doi.org/10.3389/fmicb.2015.00179

Thombre, R., Kulkarni, P., Gomez, F., and Sivaraman, B. (2018). Extremophiles from Tirez and Peña Hueca: implications for exploring habitability of Mars and Europa. European Planetary Science Congress. Berlin, Germany. EPSC2018, id.1180.

Tinetti, G., Encrenaz, T., and Coustenis, A. (2013). Spectroscopy of planetary atmospheres in our Galaxy. Astrono. Astrophys. Rev., 21(1), 63. https://doi.org/10.1007/s00159-013-0063-6

Veblen, T. T., Young, K. R., and Orme, A. R. (2015). The Physical Geography of South America. Oxford: Oxford University Press.

Vicenzi, E. P., and Eiler, J. (1998). Oxygen isotopic composition and high-resolution secondary ion mass spectrometry imaging of Martian carbonate in Lafayette meteorite. Meteorit. Planet. Sci., 33(S4), A159–A160.

Vítek, P., Edwards, H. G. M., Jehlicka, J., Ascaso, C., De Los Rios, A., Valea, S., Jorge-Villar, S. E., Davila, A. F., and Wierzchos, J. (2010). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. Roy. Soc. A, 368(1922), 3205–3221. https://doi.org/10.1098/rsta.2010.0059

Vítek, P., Jehlička, J., Edwards, H. G. M., Hutchinson, I., Ascaso, C., and Wierzchos, J. (2014). Miniaturized Raman instrumentation detects carotenoids in Mars-analogue rocks from the Mojave and Atacama deserts. Philos. Trans. Roy. Soc. A, 372(2030), 20140196. https://doi.org/10.1098/rsta.2014.0196

Wang, J. L., Dragone, N. B., Avard, G., and Hynek, B. M. (2022). Microbial survival in an extreme martian analog ecosystem: Poás Volcano, Costa Rica. Front. Astron. Space Sci., 9, 817900. https://doi.org/10.3389/fspas.2022.817900

Warren-Rhodes, K. A., Lee, K. C., Archer, S. D. J., Cabrol, N., Ng-Boyle, L., Wettergreen, D., Zacny, K., Pointing, S. B., and the NASA Life in the Atacama Project Team. (2019). Subsurface microbial habitats in an extreme desert Mars-analog environment. Front. Microbiol., 10, 69. https://doi.org/10.3389/fmicb.2019.00069

Wentworth, S. J., Gibson, E. K., Velbel, M. A., and McKay, D. S. (2005). Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus, 174(2), 383–395. https://doi.org/10.1016/j.icarus.2004.08.026

Westall, F., Cavalazzi, B., Lemelle, L., Marrocchi, Y., Rouzaud, J. N., Simionovici, A., Salomé, M., Mostefaoui, S., Andreazza, C., … Défarge, C. (2011a). Implications of in situ calcification for photosynthesis in a ~ 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth and Planetary Science Letters, 310(3-4), 468–479. https://doi.org/10.1016/j.jpgl.2011.08.029

Westall, F., Foucher, F., Cavalazzi, B., de Vries, S. T., Nijman, W., Pearson, V., Watson, J., Verchovsky, A., Wright, I., … Anne, S. (2011b). Volcaniclastic habitats for early life on Earth and Mars: a case study from ~3.5 Ga-old rocks from the Pilbara, Australia. Planet. Space Sci., 59(10), 1093–1106. https://doi.org/10.1016/j.pss.2010.09.006

Westall, F., Foucher, F., Bost, N., Bertrand, M., Loizeau, D., Vago, J. L., Kminek, G., Gaboyer, F., Campbell, K. A., … Cockell, C. S. (2015). Biosignatures on Mars: what, where, and how? Implications for the search for martian life. Astrobiology, 15(11), 998–1029. https://doi.org/10.1089/ast.2015.1374

White, L. M., Gibson, E. K., Thomas-Keprta, K. L., Clemett, S. J., and McKay, D. S. (2014). Putative indigenous carbon-bearing alteration features in martian meteorite Yamato 000593. Astrobiology, 14(2), 170−181. https://doi.org/10.1089/ast.2011.0733

Wieler, R. (2014). Noble gas mass spectrometry. Treatise Geochem., 15, 355–373. https://doi.org/10.1016/B978-0-08-095975-7.01428-5

Wierzchos, J., de Los Ríos, A., Sancho, L. G., and Ascaso, C. (2004). Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. J. Microsc., 216(1), 57–61. https://doi.org/10.1111/j.0022-2720.2004.01386.x

Wierzchos, J., Ascaso, C., and McKay, C. P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 6(3), 415–422. https://doi.org/10.1089/ast.2006.6.415

Wolfe-Simon, F., Davies, P. C. W., and Anbar, A. D. (2009). Did nature also choose arsenic?. Int. J. Astrobiol., 8(2), 69–74. https://doi.org/10.1017/S1473550408004394

Wu, X., Mustard, J. F., Tarnas, J. D., Zhang, X., Das, E., and Liu, Y. (2021). Imaging Mars analog minerals' reflectance spectra and testing mineral detection algorithms. Icarus, 369, 114644. https://doi.org/10.1016/j.icarus.2021.114644

Wynne, J. J., Cabrol, N. A., Diaz, G. C., Grin, E. A., Jhabvala, M. D., Moersch, J. E., and Titus, T. N. (2008). Earth-Mars Cave Detection Program, Phase 2 – 2008 Atacama Desert Expedition Summary Report, Explorers Club Flag Report, Flag #52, On File at The Explorers Club Headquarters, New York.

Xiao, L., Wang, J., Dang, Y. N., Cheng, Z. Y., Huang, T., Zhao, J. N., Xu, Y., Huang, J., Xiao, Z. Y., and Komatsu, G. (2017). A new terrestrial analogue site for Mars research: the Qaidam Basin, Tibetan Plateau (NW China). Earth Sci. Rev., 164, 84–101. https://doi.org/10.1016/j.earscirev.2016.11.003

Xu, W. M., Liu, X. F., Yan, Z. X., Li, L. N., Zhang, Z. Q., Kuang, Y. W., Jiang, H., Yu, H. X., Yang, F., … Shu, R. (2021). The MarSCoDe instrument suite on the Mars rover of China's Tianwen-1 mission. Space Sci. Rev., 217(5), 64. https://doi.org/10.1007/s11214-021-00836-5

Yair, Y., Reshef, L., Shopen-Gochev, C., Yoffe, G., Azulay, G., Aharonson, O., and Sorek-Abramovich, R. (2021). Temporal and spatial analysis of forward and backward microbial contamination in a Mars analog mission. Front. Astron. Space Sci., 8, 589147. https://doi.org/10.3389/fspas.2021.589147

Yen, A. S., Gellert, R., Schröder, C., Morris, R. V., Bell III, J. F., Knudson, A. T., Clark, B. C., Ming, D. W., Crisp, J. A., … Zipfel, J. (2005). An integrated view of the chemistry and mineralogy of martian soils. Nature, 436(7047), 49–54. https://doi.org/10.1038/nature03637

Zahnle, K., Freedman, R. S., and Catling, D. C. (2011). Is there methane on Mars?. Icarus, 212(2), 493−503. https://doi.org/10.1016/j.icarus.2010.11.027

Zheng, M. P. (1997). An Introduction to Saline Lakes on the Qinghai-Tibet Plateau. Dordrecht: Springer.

Zheng, M. P., Wang, A., Kong, F. J., and Ma, N. N. (2009). Saline lakes on Qinghai-Tibet Plateau and salts on Mars. In Proceedings of the 40th Lunar and Planetary Science Conference. Abstract 1454.

Ziolkowski, L. A., Wierzchos, J., Davila, A. F., and Slater, G. F. (2013). Radiocarbon evidence of active endolithic microbial communities in the hyperarid core of the atacama desert. Astrobiology, 13(7), 607–616. https://doi.org/10.1089/ast.2012.0854

Zou, Y. L., Zhu, Y., Bai, Y. F., Wang, L. G., Jia, Y. Z., Shen, W. H., Fan, Y., Liu, Y., Wang, C., … Peng, Y. Q. (2021). Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission. Adv. Space Res., 67(2), 812–823. https://doi.org/10.1016/j.asr.2020.11.005

[1]

WenLiang Cui, JinSu Zhang, Frederic Schmidt, Duo Cui, XiaoMeng Huang, Tong Li, Feng Tian, 2018: Simultaneous characterization of the atmospheres, surfaces, and exomoons of nearby rocky exoplanets, Earth and Planetary Physics, 2, 247-256. doi: 10.26464/epp2018024

[2]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[3]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[4]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[5]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[6]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[7]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[8]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[9]

ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011

[10]

D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004

[11]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[12]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[13]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[14]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062

[15]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

[16]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[17]

YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li, 2020: Overview of the Mars climate station for Tianwen-1 mission, Earth and Planetary Physics, 4, 371-383. doi: 10.26464/epp2020057

[18]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

[19]

YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026

[20]

A. M. S. Franco, E. Echer, M. J. A. Bolzan, M. Fraenz, 2022: Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations, Earth and Planetary Physics, 6, 28-41. doi: 10.26464/epp2022006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments

JianXun Shen, Yan Chen, Yu Sun, Li Liu, YongXin Pan, Wei Lin