Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Huang, Y., Dai, L., Wang, C., Xu, R. L. and Li, L. (2021). A new inversion method for reconstruction of plasmaspheric He+ density from EUV images. Earth Planet. Phys., 5(2), 218–222doi: 10.26464/epp2021020

2021, 5(2): 218-222. doi: 10.26464/epp2021020

A new inversion method for reconstruction of plasmaspheric He+ density from EUV images

1. 

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. 

Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Corresponding author: Lei Dai, ldai@spaceweather.ac.cn

Received Date: 2020-11-06
Web Publishing Date: 2021-03-01

The Computer Tomography (CT) method is used for remote sensing the Earth’s plasmasphere. One challenge for image reconstruction is insufficient projection data, mainly caused by limited projection angles. In this study, we apply the Algebraic Reconstruction Technique (ART) and the minimization of the image Total Variation (TV) method, with a combination of priori knowledge of north–south symmetry, to reconstruct plasmaspheric He+ density from simulated EUV images. The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient. This method has good performance even with a projection angle of less than 150 degrees. The method of our study is expected to have applications in the Soft X-ray Imager (SXI) reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer (SMILE) mission.

Key words: Earth plasmasphere He+ density; algebraic reconstruction technique; image total variation; north–south symmetry; SXI image reconstruction; SMILE mission

Carpenter, D. L., and Anderson, R. R. (1992). An ISEE/whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res., 97(A2), 1097–1108. https://doi.org/10.1029/91JA01548

Craven, P. D., Gallagher, D. L., and Comfort, R. H. (1997). Relative concentration of He+ in the inner magnetosphere as observed by the DE 1 retarding ion mass spectrometer. J. Geophys. Res., 102(A2), 2279–2289. https://doi.org/10.1029/96JA02176

Cravens, T. E. (2000). Heliospheric X-ray emission associated with charge transfer of the solar wind with interstellar neutrals. Astrophys. J., 532(2), L153–L156. https://doi.org/10.1086/312574

Cummings, W. D., O’Sullivan, R. J., and Coleman, P. J. Jr. (1969). Standing Alfvén waves in the magnetosphere. J. Geophys. Res., 74(3), 778–793. https://doi.org/10.1029/JA074i003p00778

He, F., Zhang, X. X., Chen, B., and Fok, M. C. (2011). Reconstruction of the plasmasphere from Moon-based EUV images. J. Geophys. Res., 116(A11), A11203. https://doi.org/10.1029/2010JA016364

He, H., Shen, C., Wang, H. N., Zhang, X. X., Chen, B., Yan, J., Zou, Y. L., Jorgensen, A. M., He, F., … Xu, R. L. (2016). Response of plasmaspheric configuration to substorms revealed by Chang’e 3. Sci. Rep., 6, 32362. https://doi.org/10.1038/srep32362

Herman, G. T. (1980). Image Reconstruction from Projection: the Fundamentals of Computerized Tomography. Academic Press, New York222

Hsieh, J. (2009). Computed Tomography: Principles, Design, Artifacts, and Recent Advances (2nd ed). Bellingham: SPIE.222

Huang, X. Q., Reinisch, B. W., Song, P., Green, J. L., and Gallagher, D. L. (2004). Developing an empirical density model of the plasmasphere using IMAGE/RPI observations. Adv. Space Res, 33(6), 829–832. https://doi.org/10.1016/j.asr.2003.07.007

Huang, Y., Xu, R. L., Li, L., and Jin., X. (2009). Deduction of the global density of the plasmasphere reconstructed from the observation images using computed tomography technique-the earth’s shelter. Chin. J. Geophys. (in Chinese) , 52(11), 2683–2688.

Huang, Y., Xu, R. L., Shen, C., Li, L., and Chen, Z. Q. (2012). Deduction of the global density of the plasmasphere reconstructed from the observation images using computer tomography technique -incomplete projection data. Chin. J. Geophys. (in Chinese) , 55(4), 1071–1077.

Huang, Y., Cheng, B. J., Liu., X. W., Shen, C., Zhang, Y. T., Li, L., and Zhang, L. Q. (2016). Reconstruction of Martian methane’s spatial density distribution. Chin. Sci. Bull. (in Chinese) , 61(16), 1822–1827. https://doi.org/10.1360/N972015-01084

Huang, Y., Cheng, B. J., Liu., X. W., Shen, C., Zhang, Y. T., Li, L., and Zhang, L. Q. (2011). Deduction of the global density of plasmasphere reconstructed from the EUV images using CT method 2. Three dimensional parallel-beam ART reconstruction. Chin. J. Geophys. (in Chinese) , 54(7), 1691–1700. https://doi.org/10.3969/j.issn.0001-5733.2011.07.001

Jorgensen, A. M., Sun, T. R., Wang, C., Dai, L., Sembay, S., Zheng, J. H., and Yu, X. Z. (2019). Boundary detection in three dimensions with application to the SMILE mission: the effect of model-fitting noise. J. Geophys. Res., 124(6), 4341–4355. https://doi.org/10.1029/2018JA026124

Kim, E., Kim, Y. H., Jee, G., and Ssessanga, N. (2018). Reconstruction of plasmaspheric density distributions by applying a tomography technique to Jason-1 plasmaspheric TEC measurements. Radio Sci., 53(6), 866–873. https://doi.org/10.1029/2017RS006527

Li, C. F., Zhou, K. Y., Huang, D., Chen, Z. S., He, L., and Wang, Q. L. (2004). A knowledge-based automatic segmentation of the cerebral computerized tomography images. Chin. J. Med. Instrum. (in Chinese) , 28(3), 168–171. https://doi.org/10.3969/j.issn.1671-7104.2004.03.004

Li, C. L., Liu, J. J., Ren, X., Zou, W., Tan, X., Wen, W. B., Li. H., Mu., L. L., Su, Y., … Ouyang, Z. Y. (2015). The chang’e 3 mission overview. Space Sci. Rev., 190(1), 85–101. https://doi.org/10.1007/s11214-014-0134-7

Li, L., Kang, K. J., Chen, Z. Q., Zhang, L., Xing, Y. X., Yu, H. Y., and Wang, G. (2008). An alternative derivation and description of Smith’s data sufficiency condition for exact cone-beam reconstruction. J. X-Ray Sci. Technol., 16(1), 43–49.

Li, L., Chen, Z. Q., Xu, R. L., Kang, K. J., Zhang, L., and Xing, Y. X. (2009). A study of the plasmasphere density distribution using computed tomography methods from the EUV radiation data. Adv. Space Res., 43(7), 1143–1147. https://doi.org/10.1016/j.asr.2008.10.013

Meier, R. R., Nicholas, A. C., Picone, J. M., Melendez-Alvira, D. J., Ganguli, G. I., Reynolds, M. A., and Roelof, E. C. (1998). Inversion of plasmaspheric EUV remote sensing data from the STP 72-1 satellite. J. Geophys. Res., 103(A8), 17505–17518. https://doi.org/10.1029/98JA01175

Nakamura, M., Yoshikawa, I., Yamazaki, A., Shiomi, K., Takizawa, Y., Hirahara, M., Yamashita, K., Saito, Y., and Miyake, W. (2000). Terrestrial plasmaspheric imaging by an extreme ultraviolet scanner on Planet-B. Geophys. Res. Lett., 27(2), 141–144. https://doi.org/10.1029/1999GL010732

Orr, D., and Matthew, J. A. D. (1971). The variation of geomagnetic micropulsation periods with latitude and the plasmapause. Planet. Space Sci., 19(8), 897–905. https://doi.org/10.1016/0032-0633(71)90141-3

Ozhogin, P., Tu, J., Song, P., and Reinisch, B. W. (2012). Field-aligned distribution of the plasmaspheric electron density: an empirical model derived from the IMAGE RPI measurements. J. Geophys Res., 117(A6), A06225. https://doi.org/10.1029/2011JA017330

Sandel, B. R., Broadfoot, A. L., Curtis, C. C., King, R. A., Stone, T. C., Hill, R. H., Chen, J., Siegmund, O. H. W., Raffanti, R., … Gallagher, D. L. (2000). The extreme ultraviolet imager investigation for the IMAGE mission. Space Sci. Rev., 91(1-2), 197–242. https://doi.org/10.1023/A:1005263510820

Sandel, B. R., and Denton, M. H. (2007). Global view of refilling of the plasmasphere. Geophys. Res. Lett., 34(17), L17102. https://doi.org/10.1029/2007GL030669

Sidky, E. Y., Kao, C. M., and Pan, X. C. (2006). Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J. X-Ray Sci. Technol., 14(2), 119–139.

Sun, T. R., Wang, C., Wei, F., and Sembay, S. (2015). X-ray imaging of Kelvin-Helmholtz waves at the magnetopause. J. Geophys. Res., 120(1), 266–275. https://doi.org/10.1002/2014JA020497

Tuy, H. K. (1983). An inversion formula for cone-beam reconstruction. SIAM J. Appl. Math., 43(3), 546–552. https://doi.org/10.1137/0143035

Wang, C., and Branduardi-Raymond, G. (2018). Progress of Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission. Chin. J. Space Sci., 38(5), 657–661. https://doi.org/10.11728/cjss2018.05.657

[1]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[2]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[3]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[4]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[5]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[6]

YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li, 2020: Overview of the Mars climate station for Tianwen-1 mission, Earth and Planetary Physics, 4, 371-383. doi: 10.26464/epp2020057

[7]

Tao Tang, Jun Yang, QuanQi Shi, AnMin Tian, Shi-Chen Bai, Alexander William Degeling, SuiYan Fu, JingXian Liu, Tong Shao, ZeYuan Sun, 2020: The semiannual variation of transpolar arc incidence and its relationship to the Russell–McPherron effect, Earth and Planetary Physics, 4, 619-626. doi: 10.26464/epp2020066

[8]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[9]

ChunYu Ding, YuZhen Cai, ZhiYong Xiao, Yan Su, 2020: A rocky hill on the continuous ejecta of Ziwei crater revealed by the Chang’e-3 mission, Earth and Planetary Physics, 4, 105-110. doi: 10.26464/epp2020016

[10]

GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu, 2020: Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 364-370. doi: 10.26464/epp2020056

[11]

WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052

[12]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[13]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[14]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[15]

Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics. doi: 10.26464/epp2021030

[16]

YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015

[17]

Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004

[18]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[19]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[20]

WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A new inversion method for reconstruction of plasmaspheric He+ density from EUV images

Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li