Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhu, M. H., Yu, Y. Q., Cao, X., Ni, B. B., Tian, X. B., Cao, J. B., and Jordanova, V. K. (2022). Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics. Earth Planet. Phys., 6(4), 329–338. http://doi.org/10.26464/epp2022037

2022, 6(4): 329-338. doi: 10.26464/epp2022037

Effects of polarization-reverse

Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics

1. 

School of Space and Environment, Beihang University, Beijing 100191, China

2. 

Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100191, China

3. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

4. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China

5. 

Space Science and Application, Los Alamos National Laboratory, Los Alamos, 87545, New Mexico, USA

Corresponding author: YiQun Yu, yiqunyu17@gmail.com

Received Date: 2022-04-15
Web Publishing Date: 2022-06-06

Electromagnetic ion cyclotron (EMIC) waves are widely believed to play an important role in influencing the radiation belt and ring current dynamics. Most studies have investigated the effects or characteristics of EMIC waves by assuming their left-handed polarization. However, recent studies have found that the reversal of polarization, which occurs at higher latitudes along the wave propagation path, can change the wave-induced pitch angle diffusion coefficients. Whether such a polarization reversal can influence the global ring current dynamics remains unknown. In this study, we investigate the ring current dynamics and proton precipitation loss in association with polarization-reversed EMIC waves by using the ring current–atmosphere interactions model (RAM). The results indicate that the polarization reversal of H-band EMIC waves can truly decrease the scattering rates of protons of 10 to 50 keV or >100 keV in comparison with the scenario in which the EMIC waves are considered purely left-handed polarized. Additionally, the global ring current intensity and proton precipitation may be slightly affected by the polarization reversal, especially during prestorm time and the recovery phase, but the effects are not large during the main phase. This is probably because the H-band EMIC waves contribute to the proton scattering loss primarily at E < 10 keV, an energy range that is not strongly affected by the polarization reversal.

Key words: electromagnetic ion cyclotron waves, polarization reversal, ring current

Albert, J. M. (2003). Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J. Geophys. Res.:Space Phys., 108(A6), 1249. https://doi.org/10.1029/2002JA009792

Allen, R. C., Zhang, J. C., Kistler, L. M., Spence, H. E., Lin, R. L., Klecker, B., Dunlop, M. W., André, M., and Jordanova, V. K. (2015). A statistical study of EMIC waves observed by Cluster: 1. Wave properties. J. Geophys. Res.:Space Phys., 120(7), 5574–5592. https://doi.org/10.1002/2015JA021333

Allen, R. C., Zhang, J. C., Kistler, L. M., Spence, H. E., Lin, R. L., Klecker, B., Dunlop, M. W., André, M., and Jordanova, V. K. (2016). A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions. J. Geophys. Res.:Space Phys., 121(7), 6458–6479. https://doi.org/10.1002/2016JA022541

Anderson, B. J., Erlandson, R. E., and Zanetti, L. J. (1992). A statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere: 2. Wave properties. J. Geophys. Res.:Space Phys., 97(A3), 3089–3101. https://doi.org/10.1029/91JA02697

Anderson, B. J., Denton, R. E., Ho, G., Hamilton, D. C., Fuselier, S. A., and Strangeway, R. J. (1996). Observational test of local proton cyclotron instability in the Earth’s magnetosphere. J. Geophys. Res.:Space Phys., 101(A10), 21527–21543. https://doi.org/10.1029/96JA01251

Blum, L. W., Remya, B., Denton, M. H., and Schiller, Q. (2020). Persistent EMIC wave activity across the nightside inner magnetosphere. Geophys. Res. Lett., 47(6), e2020GL087009. https://doi.org/10.1029/2020GL087009

Cao, X., Ni, B. B., Liang, J., Xiang, Z., Wang, Q., Shi, R., Gu, X. D., Zhou, C., Zhao, Z. Y., … Liu, J. (2016). Resonant scattering of central plasma sheet protons by multiband EMIC waves and resultant proton loss timescales. J. Geophys. Res.:Space Phys., 121(2), 1219–1232. https://doi.org/10.1002/2015JA021933

Cao, X., Ni, B. B., Summers, D., Shprits, Y. Y., Gu, X. D., Fu, S., Lou, Y. Q., Zhang, Y., Ma, X., … Yi, J. (2019). Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution. Geophys. Res. Lett., 46(2), 590–598. https://doi.org/10.1029/2018GL081550

Cao, X., Ni, B. B., Summers, D., Shprits, Y. Y., and Lou, Y. Q. (2020). Effects of polarization reversal on the pitch angle scattering of radiation belt electrons and ring current protons by EMIC waves. Geophys. Res. Lett., 47(17), e2020GL089718. https://doi.org/10.1029/2020GL089718

Capannolo, L., Li, W., Ma, Q. L., Shen, X. C., Zhang, X. J., Redmon, R. J., Rodriguez, J. V., Engebretson, M. J., Kletzing, C. A., …Raita, T. (2019). Energetic electron precipitation: Multievent analysis of its spatial extent during EMIC wave activity. J. Geophys. Res.:Space Phys., 124(4), 2466–2483. https://doi.org/10.1029/2018JA026291

Cornwall, J. M. (1965). Cyclotron instabilities and electromagnetic emission in the ultra low frequency and very low frequency ranges. J. Geophys. Res., 70(1), 61–69. https://doi.org/10.1029/JZ070i001p00061

Cornwall, J. M. (1972). Precipitation of auroral and ring current particles by artificial plasma injection. Rev. Geophys., 10(4), 993–1002. https://doi.org/10.1029/RG010i004p00993

Engebretson, M. J., Posch, J. L., Capman, N. S. S., Campuzano, N. G., Bělik, P., Allen, R. C., Vines, S. K., Anderson, B. J., Tian, S., … Singer, H. J. (2018a). MMS, Van Allen Probes, GOES 13, and ground-based magnetometer observations of EMIC wave events before, during, and after a modest interplanetary shock. J. Geophys. Res.:Space Phys., 123(10), 8331–8357. https://doi.org/10.1029/2018JA025984

Engebretson, M. J., Posch, J. L., Braun, D. J., Li, W., Ma, Q. L., Kellerman, A. C., Huang, C. L., Kanekal, S. G., Kletzing, C. A., … Ermakova, E. (2018b). EMIC wave events during the four GEM QARBM challenge intervals. J. Geophys. Res.:Space Phys., 123(8), 6394–6423. https://doi.org/10.1029/2018JA025505

Glauert, S. A., and Horne, R. B. (2005). Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res.:Space Phys., 110(A4), A04206. https://doi.org/10.1029/2004JA010851

He, F. M., Cao, X., Ni, B. B., Xiang, Z., Zhou, C., Gu, X. D., Zhao, Z. Y., Shi, R., and Wang, Q. (2016). Combined scattering loss of radiation belt relativistic electrons by simultaneous three-band EMIC waves: A case study. J. Geophys. Res.:Space Phys., 121(5), 4446–4451. https://doi.org/10.1002/2016JA022483

Hendry, A. T., Rodger, C. J., Clilverd, M. A., Engebretson, M. J., Mann, I. R., Lessard, M. R., Raita, T., and Milling, D. K. (2016). Confirmation of EMIC wave-driven relativistic electron precipitation. J. Geophys. Res.:Space Phys., 121(6), 5366–5383. https://doi.org/10.1002/2015JA022224

Horne, R. B., and Thorne, R. M. (1994). Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. J. Geophys. Res.:Space Phys., 99(A9), 17259–17273. https://doi.org/10.1029/94JA01259

Hu, Y. G., Denton, R. E., and Johnson, J. R. (2010). Two-dimensional hybrid code simulation of electromagnetic ion cyclotron waves of multi-ion plasmas in a dipole magnetic field. J. Geophys. Res.:Space Phys., 115(A9), A09218. https://doi.org/10.1029/2009JA015158

Jordanova, V. K., Kozyra, J. U., and Nagy, A. F. (1996). Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with electromagnetic ion cyclotron waves. J. Geophys. Res.:Space Phys., 101(A9), 19771–19778. https://doi.org/10.1029/96JA01641

Jordanova, V. K., Farrugia, C. J., Thorne, R. M., Khazanov, G. V., Reeves, G. D., and Thomsen, M. F. (2001). Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm. J. Geophys. Res.:Space Phys., 106(A1), 7–22. https://doi.org/10.1029/2000JA002008

Jordanova, V. K., Miyoshi, Y. S., Zaharia, S., Thomsen, M. F., Reeves, G. D., Evans, D. S., Mouikis, C. G., and Fennell, J. F. (2006). Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events. J. Geophys. Res.:Space Phys., 111(A11), A11S10. https://doi.org/10.1029/2006JA011644

Jordanova, V. K., Albert, J., and Miyoshi, Y. (2008). Relativistic electron precipitation by EMIC waves from self-consistent global simulations. J. Geophys. Res.:Space Phys., 113(A3), A00A10. https://doi.org/10.1029/2008JA013239

Jordanova, V. K., Zaharia, S., and Welling, D. T. (2010). Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations. J. Geophys. Res.:Space Phys., 115(A12), A00J11. https://doi.org/10.1029/2010JA015671

Jun, C. W., Yue, C., Bortnik, J., Lyons, L. R., Nishimura, Y. T., Kletzing, C. A., Wygant, J., and Spence, H. (2019). A statistical study of EMIC waves associated with and without energetic particle injection from the magnetotail. J. Geophys. Res.:Space Phys., 124(1), 433–450. https://doi.org/10.1029/2018JA025886

Kennel, C. F., and Petschek, H. E. (1966). Limit on stably trapped particle fluxes. J. Geophys. Res., 71(1), 1–28. https://doi.org/10.1029/JZ071i001p00001

Kersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., and Grew, R. S. (2014). Electron losses from the radiation belts caused by EMIC waves. J. Geophys. Res.:Space Phys., 119(11), 8820–8837. https://doi.org/10.1002/2014JA020366

Kim, H., Shiokawa, K., Park, J., Miyoshi, Y., Miyashita, Y., Stolle, C., Kim, K. H., Matzka, J., Buchert, S., … Hwang, J. (2020). Ionospheric plasma density oscillation related to EMIC Pc1 waves. Geophys. Res. Lett., 47(15), e2020GL089000. https://doi.org/10.1029/2020GL089000

Kitamura, N., Kitahara, M., Shoji, M., Miyoshi, Y., Hasegawa, H., Nakamura, S., Katoh, Y., Saito, Y., Yokota, S., … Burch, J. L. (2018). Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma. Science, 361(6406), 1000–1003. https://doi.org/10.1126/science.aap8730

Kozyra, J. U., Cravens, T. E., Nagy, A. F., Fontheim, E. G., and Ong, R. S. B. (1984). Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region. J. Geophys. Res.:Space Phys., 89(A4), 2217–2233. https://doi.org/10.1029/JA089iA04p02217

Kwon, J. W., Kim, K. H., Jin, H., Kwon, H. J., Jee, G., Shiokawa, K., and Connors, M. (2020). Statistical study of EMIC Pc1-Pc2 waves observed at subauroral latitudes. J. Atmos. Sol.-Terr. Phys., 205, 105292. https://doi.org/10.1016/j.jastp.2020.105292

Li, L. Y., Yu, J., Cao, J. B., and Yuan, Z. G. (2016). Compression-amplified EMIC waves and their effects on relativistic electrons. Phys. Plasmas, 23(6), 062116. https://doi.org/10.1063/1.4953899

Lou, Y. Q., Cao, X., Ni, B. B., Wu, M. Y., and Zhang, T. L. (2021). Parametric dependence of polarization reversal effects on the particle pitch angle scattering by EMIC waves. J. Geophys. Res.:Space Phys., 126(12), e2021JA029966. https://doi.org/10.1029/2021JA029966

Lyons, L. R., and Thorne, R. M. (1972). Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves. J. Geophys. Res., 77(28), 5608–5616. https://doi.org/10.1029/JA077i028p05608

Ma, Q. L., Li, W., Yue, C., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., and Spence, H. E. (2019). Ion heating by electromagnetic ion cyclotron waves and magnetosonic waves in the Earth’s inner magnetosphere. Geophys. Res. Lett., 46(12), 6258–6267. https://doi.org/10.1029/2019GL083513

Ma, X., Xiang, Z., Ni, B. B., Fu, S., Cao, X., Hua, M., Guo, D. Y., Guo, Y. J., Gu, X. D., Liu, Z. Y. and Zhu, Q. (2020). On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm. Earth Planet. Phys., 4(6), 598–610. https://doi.org/10.26464/epp2020060

Mauk, B. H., and McPherron, R. L. (1980). An experimental test of the electromagnetic ion cyclotron instability within the Earth’s magnetosphere. Phys. Fluids, 23(10), 2111–2127. https://doi.org/10.1063/1.862873

Min, K., Lee, J., Keika, K., and Li, W. (2012). Global distribution of EMIC waves derived from THEMIS observations. J. Geophys. Res.:Space Phys., 117(A5), A05219. https://doi.org/10.1029/2012JA017515

Ni, B. B., Thorne, R. M., Shprits, Y. Y., and Bortnik, J. (2008). Resonant scattering of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation. Geophys. Res. Lett., 35(11), L11106. https://doi.org/10.1029/2008GL034032

Ni, B. B., Thorne, R. M., Meredith, N. P., Horne, R. B., and Shprits, Y. Y. (2011). Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves. J. Geophys. Res.:Space Phys., 116(A4), A04219. https://doi.org/10.1029/2010JA016233

Ni, B. B., Cao, X., Zou, Z. Y., Zhou C., Gu, X. D., Bortnik, J., Zhang, J. C., Fu, S., Zhao, Z. Y., … Xie, L. (2015). Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales. J. Geophys. Res.:Space Phys., 120(9), 7357–7373. https://doi.org/10.1002/2015JA021466

Ni, B. B., Cao, X., Shprits, Y. Y., Summers, D., Gu, X. D., Fu, S., and Lou, Y. Q. (2018). Hot plasma effects on the cyclotron-resonant pitch-angle scattering rates of radiation belt electrons due to EMIC waves. Geophys. Res. Lett., 45(1), 21–30. https://doi.org/10.1002/2017GL076028

Perraut, S., Gendrin, R., Roux, A., and de Villedary, C. (1984). Ion cyclotron waves: Direct comparison between ground-based measurements and observations in the source region. J. Geophys. Res.:Space Phys., 89(A1), 195–202. https://doi.org/10.1029/JA089iA01p00195

Rauch, J. L., and Roux, A. (1982). Ray tracing of ULF waves in a multicomponent magnetospheric plasma: Consequences for the generation mechanism of ion cyclotron waves. J. Geophys. Res.:Space Phys., 87(A10), 8191–8198. https://doi.org/10.1029/JA087iA10p08191

Saikin, A. A., Zhang, J. C., Allen, R. C., Smith, C. W., Kistler, L. M., Spence, H. E., Torbert, R. B., Kletzing, C. A., and Jordanova, V. K. (2015). The occurrence and wave properties of H+-, He+-, and O+-band EMIC waves observed by the Van Allen Probes. J. Geophys. Res.:Space Phys., 120(9), 7477–7492. https://doi.org/10.1002/2015JA021358

Saikin, A. A. (2018). The spatial distributions, wave properties, and generation mechanisms of inner magnetosphere EMIC waves [Ph. D. thesis]. Durham: University of New Hampshire.222

Sheeley, B. W., Moldwin, M. B., Rassoul, H. K., and Anderson, R. R. (2001). An empirical plasmasphere and trough density model: CRRES observations. J. Geophys. Res.:Space Phys., 106(A11), 25631–25641. https://doi.org/10.1029/2000JA000286

Shprits, Y. Y., and Ni, B. B. (2009). Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves. J. Geophys. Res.:Space Phys., 114(A11), A11205. https://doi.org/10.1029/2009JA014223

Shreedevi, P. R., Yu, Y. Q., Ni, B. B., Saikin, A., and Jordanova, V. K. (2021). Simulating the ion precipitation from the inner magnetosphere by H-band and He-band electro magnetic ion cyclotron waves. J. Geophys. Res.:Space Phys., 126(3), e2020JA028553. https://doi.org/10.1029/2020JA028553

Stern, D. P. (1975). The motion of a proton in the equatorial magnetosphere. J. Geophys. Res., 80(4), 595–599. https://doi.org/10.1029/JA080i004p00595

Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Shen, C., Wang, Y. M., and Wang, S. (2013). Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons. J. Geophys. Res.:Space Phys., 118(6), 3188–3202. https://doi.org/10.1002/jgra.50289

Summers, D., and Thorne, R. M. (2003). Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res.:Space Phys., 108(A4), 1143. https://doi.org/10.1029/2002JA009489

Summers, D., Ni, B. B., and Meredith, N. P. (2007). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J. Geophys. Res.:Space Phys., 112(A4), A04206. https://doi.org/10.1029/2006JA011801

Thorne, R. M., and Horne, R. B. (1997). Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during magnetic storms. J. Geophys. Res.:Space Phys., 102(A7), 14155–14163. https://doi.org/10.1029/96JA04019

Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., … Wygant, J. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations. Geophys. Res. Lett., 41(5), 1375–1381. https://doi.org/10.1002/2013GL059024

Volland, H. (1973). A semiempirical model of large-scale magnetospheric electric fields. J. Geophys. Res., 78(1), 171–180. https://doi.org/10.1029/JA078i001p00171

Wang, Q., Cao, X., Gu, X. D., Ni, B. B., Zhou, C., Shi, R., and Zhao, Z. Y. (2016). A parametric study of the linear growth of magnetospheric EMIC waves in a hot plasma. Phys. Plasmas, 23(6), 062903. https://doi.org/10.1063/1.4953565

Wang, X. Y., Huang, S. Y., Allen, R. C., Fu, H. S., Deng, X. H., Zhou, M., Burch, J. L., and Torbert, R. B. (2017). The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission. J. Geophys. Res.:Space Phys., 122(8), 8228–8240. https://doi.org/10.1002/2017JA024237

Xiao, F. L., Chen, L. X., He, Y. H., Su, Z. P., and Zheng, H. N. (2011). Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves. J. Atmos. Sol.-Terr. Phys., 73(1), 106–111. https://doi.org/10.1016/j.jastp.2010.01.007

Xiao, F. L., Yang, C., Zhou, Q. H., He, Z. G., He, Y. H., Zhou, X. P., and Tang, L. J. (2012). Nonstorm time scattering of ring current protons by electromagnetic ion cyclotron waves. J. Geophys. Res.:Space Phys., 117(A8), A08204. https://doi.org/10.1029/2012JA017922

Xue, Z. X., Yuan, Z. G., Yu, X. D., Huang, S. Y. and Qiao, Z. (2021). Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves. Earth Planet. Phys., 5(1), 32–41. https://doi.org/10.26464/epp2021008

Young, D. T., Perraut, S., Roux, A., de Villedary, C., Gendrin, R., Korth, A., Kremser, G., and Jones, D. (1981). Wave–particle interactions near \begin{document}$ {\Omega }_{{He}^{+}} $\end{document} observed on GEOS 1 and 2. 1. Propagation of ion cyclotron waves in He+-rich plasma. J. Geophys. Res.:Space Phys., 86(A8), 6755–6772. https://doi.org/10.1029/JA086iA08p06755' target='_blank'>http://www.w3.org/1999/xlink" xlink:href="RA328-zhuminghui-F_M127-1.jpg"/> observed on GEOS 1 and 2. 1. Propagation of ion cyclotron waves in He+-rich plasma. J. Geophys. Res.:Space Phys., 86(A8), 6755–6772. https://doi.org/10.1029/JA086iA08p06755

Yuan, Z. G., Deng, X. H., Lin, X., Pang, Y., Zhou, M., Décréau, P. M. E., Trotignon, J. G., Lucek, E., Frey, H. U., and Wang, J. F. (2010). Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites. Geophys. Res. Lett., 37(7), L07108. https://doi.org/10.1029/2010GL042711

Yue, C., Jun, C. W., Bortnik, J., An, X., Ma, Q. L., Reeves, G. D., Spence, H. E., Gerrard, A. J., Gkioulidou, M., .. Kletzing, C. A. (2019). The relationship between EMIC wave properties and proton distributions based on Van Allen probes observations. Geophys. Res. Lett., 46(8), 4070–4078. https://doi.org/10.1029/2019GL082633

Zaharia, S., Jordanova, V. K., Thomsen, M. F., and Reeves, G. D. (2006). Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm. J. Geophys. Res.:Space Phys., 111(A11), A11S14. https://doi.org/10.1029/2006JA011619

Zaharia, S., Jordanova, V. K., Welling, D., and Tóth, G. (2010). Self-consistent inner magnetosphere simulation driven by a global MHD model. J. Geophys. Res.:Space Phys., 115(A12), A12228. https://doi.org/10.1029/2010JA015915

Zhang, J. C., Kistler, L. M., Mouikis, C. G., Dunlop, M. W., Klecker, B., and Sauvaud, J. A. (2010). A case study of EMIC wave-associated He+ energization in the outer magnetosphere: Cluster and Double Star 1 observations. J. Geophys. Res.:Space Phys., 115(A6), A06212. https://doi.org/10.1029/2009JA014784

Zhu, M. H., Yu, Y. Q., Tian, X. B., Shreedevi, P. R., and Jordanova, V. K. (2021a). On the ion precipitation due to field line curvature (FLC) and EMIC wave scattering and their subsequent impact on ionospheric electrodynamics. J. Geophys. Res.:Space Phys., 126(3), e2020JA028812. https://doi.org/10.1029/2020JA028812

Zhu, M. H., Yu, Y. Q., and Jordanova, V. K. (2021b). Simulating the effects of warm O+ ions on the growth of electromagnetic ion cyclotron (EMIC) waves. J. Atmos. Sol.-Terr. Phys., 224, 105737. https://doi.org/10.1016/j.jastp.2021.105737

[1]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[2]

EunJin Jang, Chao Yue, QiuGang Zong, SuiYan Fu, HaoBo Fu, 2021: The effect of non-storm time substorms on the ring current dynamics, Earth and Planetary Physics, 5, 251-258. doi: 10.26464/epp2021032

[3]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[4]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[5]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[6]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[7]

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049

[8]

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

[9]

HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019

[10]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[11]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[12]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[13]

Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032

[14]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

[15]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[16]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[17]

FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022

[18]

Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042

[19]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[20]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics

MingHui Zhu, YiQun Yu, Xing Cao, BinBin Ni, XingBin Tian, JinBin Cao, Vania K. Jordanova