Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yue, M., Gao, J. Y., Li, C. F., Zhu, C., Fan, X. Z., Wu, G. C., Shen, Z. Y., Shi, H., Cai, X. X., and Guo, Y. D. (2022). Neogene faulting and volcanism in the Victoria Land Basin of the Ross Sea, Antarctica. Earth Planet. Phys., 6(3), 248–258. http://doi.org/10.26464/epp2022023

2022, 6(3): 248-258. doi: 10.26464/epp2022023

SOLID EARTH: MARINE GEOPHYSICS

Neogene faulting and volcanism in the Victoria Land Basin of the Ross Sea, Antarctica

1. 

Ocean College, Zhejiang University, Zhoushan 316021, China

2. 

Key Laboratory of Submarine Sciences, Second Institute of Oceanography, MNR, Hangzhou 310012, China

3. 

Key Laboratory of Environmental Survey Technology and Application, MNR, Guangzhou 528200, China

4. 

Sanya Institute, Zhejiang University, Sanya 572000, China

5. 

Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China

Corresponding author: JinYao Gao, gaojy@sio.org.cn

Received Date: 2021-10-24
Web Publishing Date: 2022-04-11

The Neogene Terror Rift in the Antarctic Victoria Land Basin (VLB) of the Ross Sea, Antarctica, is composed of the Discovery Graben and the Lee Arch. Many Neogene volcanoes are aligned in the north-south direction in the southern VLB, belonging to the McMurdo Volcanic Group. However, due to multiple glaciations and limited seismic data, the volcanic processes are still unclear in the northern VLB, especially in the Terror Rift. Multichannel seismic profiles were collected at the VLB from the 32nd Chinese National Antarctic Research Expedition (CHINARE). We utilized four seismic profiles from the CHINARE and additional historical profiles, along with gravity and magnetic anomalies, to analyze faults and stratigraphic characteristics in the northern Terror Rift and volcanism in the VLB. Negative flower structures found in the northern Terror Rift suggest that the Terror Rift was affected by dextral strike-slip faults extending from the northern Victoria Land (NVL). After the initial orthogonal tension, the rift transited into an oblique extension, forming a set of downward concaving normal faults and accommodation zones in the Terror Rift. On the Lee Arch, several imbricated normal faults formed and converged into a detachment fault. Under gravitational forces, the strata bent upward and formed a rollover anticline. Many deep faults and thin strata subjected to erosion facilitated volcanic activity. A brittle volcanic region in the VLB was affected by dextral strike-slip movements and east-west extension, resulting in two Neogene volcanic chains that connect three igneous provinces in the VLB: the Hallett, Melbourne, and Erebus Provinces. These two chains contain mud volcanoes with magnetic nuclei, volcanic intrusions, and late-stage volcanic eruptions. Volcanisms have brought about opposite polarities of magnetic anomalies in Antarctica, indicating the occurrence of multiple volcanic activities.

Key words: Victoria Land Basin, Terror Rift, seismic stratigraphy, gravity and magnetic modeling, faulting, Neogene volcanic intrusion

Bayasgalan, A., Jackson, J., Ritz, J. F., and Carretier, S. (1999). ‘Forebergs’, flower structures, and the development of large intra-continental strike-slip faults: The Gurvan Bogd fault system in Mongolia. J. Struct. Geol., 21(10), 1285–1302. https://doi.org/10.1016/S0191-8141(99)00064-4

Blocher, W. B. (2017). Fault Geometry and Kinematics within the Terror Rift, Antarctica. The Ohio State University.222

Brancolini, G., Busetti, M., Marchetti, A., De Santis, L., Zanolla, C., Cooper, A. K., Cochrane, G. R., Zayatz, I., Belyaev, V., Hinz, K. (1995). Descriptive text for the seismic stratigraphic atlas of the Ross Sea, Antarctica. In A. K. Cooper, et al. (Eds.), Geology and Seismic Stratigraphy of the Antarctic Margin (pp. A271–A286). Washington, DC: American Geophysical Union.222

Cande, S. C., and Kent, D. V. (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res.:Solid Earth, 100(B4), 6093–6095. https://doi.org/10.1029/94JB03098

Cooper, A. K., Davey, F. J., and Behrendt, J. C. (1987). Seismic stratigraphy and structure of the Victoria Land Basin, western Ross Sea, Antarctica. In A. K. Cooper, et al. (Eds.), The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea (pp. 27–77). Houston: Circum-Pacific Council for Energy and Resources.222

Cooper, A. K. (1989). Crustal structure of the Ross Embayment, Antarctica. In H. T. Huh, et al. (Eds.), Proceedings of 1st International Symposyum on Antarctic Science (pp. 57–72). Seoul: Korea Ocean Research and Development Institute.222

Davey, F. J., and Santis, L. D. (2006). A multi-phase rifting model for the Victoria Land Basin, western Ross Sea. In D. K. Fütterer, et al. (Eds.), Antarctica (pp. 303–308). Berlin: Springer.222

Fielding, C. R., Henrys, S. A., and Wilson, T. J. (2006). Rift history of the western Victoria Land Basin: A new perspective based on integration of cores with seismic reflection data. In D. K. Fütterer, et al. (Eds.), Antarctica (pp. 309–318). Berlin: Springer.222

Fielding, C. R., Whittaker, J., Henrys, S. A., Wilson, T. J., and Naish, T. R. (2008). Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history. Palaeogeogr., Palaeoclimatol., Palaeoecol., 260(1–2), 8–29.222

Fielding, C. R. (2018). Stratigraphic architecture of the Cenozoic succession in the McMurdo Sound region, Antarctica: An archive of polar palaeoenvironmental change in a failed rift setting. Sedimentology, 65, 1–61. https://doi.org/10.1111/sed.12413

Geletti, R., and Busetti, M. (2011). A double bottom simulating reflector in the western Ross Sea, Antarctica. J. Geophys. Res.:Solid Earth, 116(B4), B04101. https://doi.org/10.1029/2010JB007864

Golynsky, A., Chiappini, M., Damaske, D., Ferraccioli, F., Finn, C. A., Ishihara, T., Kim, H. R., Kovacs, L., Masolov, V. N., von Frese, R. (2006). ADMAP—A digital magnetic anomaly map of the Antarctic. In D. K. Fütterer, et al. (Eds.), Antarctica (pp. 109–116). Berlin: Springer.222

Hall, J., Wilson, T., and Henrys, S. (2007). Structure of the central Terror Rift, western Ross sea, Antarctica. In A. Cooper, et al. (Eds.), Antarctica: A Keystone in a Changing World—Online Proceedings of the 10th ISAES. Open-File Report 2007-1047. Reston, Virginia: U.S. Geological Survey.222

Harry, D. L., and Anoka, J. (2007). Geodynamic models of the tectonomagmatic evolution of the West Antarctic Rift System. In A. Cooper, et al. (Eds.), Antarctica: A Keystone in a Changing World—Online Proceedings of the 10th ISAES. Open-File Report 2007-1047. Reston, Virginia: U.S. Geological Survey.222

Hayes, D. E., Frakes, L. A., Barrett, P. J., Burns, D. A., Chen, P. H., Ford, A. B., and Kaneps, A. G. (1975). Initial Reports of the Deep Sea Drilling Project, Volume 28 (pp. 335–367). Washington U.S. Government Printing Office.222

Henrys, S., Wilson, T., Whittaker, J. M., Fielding, C., Hall, J., and Naish, T. (2008). Tectonic history of mid-Miocene to present southern Victoria Land Basin, inferred from seismic stratigraphy in McMurdo Sound, Antarctica. In A. Cooper, et al. (Eds.), Antarctica: A Keystone in a Changing World—Online Proceedings of the 10th ISAES. Open-File Report 2007-1047. Reston, Virginia: U.S. Geological Survey.222

Ji, F., Gao, J. Y., Li, F., Shen, Z. Y., Zhang, Q., and Li, Y. D. (2017). Variations of the effective elastic thickness over the Ross Sea and Transantarctic Mountains and implications for their structure and tectonics. Tectonophysics, 717, 127–138. https://doi.org/10.1016/j.tecto.2017.07.011

Kooyman, G. L., Goetz, K., Williams, C. L., Ponganis, P. J., Sato, K., Eckert, S., Horning, M., Thorson, P. T., and Van Dam, R. P. (2020). Crary bank: A deep foraging habitat for emperor penguins in the western Ross Sea. Polar Biol., 43(7), 801–811. https://doi.org/10.1007/s00300-020-02686-3

Kyle, P. R., and Cole, J. W. (1974). Structural control of volcanism in the McMurdo Volcanic Group, Antarctica. Bull. Volcanol., 38(1), 16–25. https://doi.org/10.1007/BF02597798

Kyle, P. R. (1990). A. McMurdo volcanic group western Ross embayment. In W. E. LeMasurier, et al. (Eds.), Volcanoes of the Antarctic Plate and Southern Oceans, Volume 48 (pp. 18–145). Washington, DC: American Geophysical Union.222

Lawver, L., Lee, J., Kim, Y., and Davey, F. (2012). Flat-topped mounds in western Ross Sea: Carbonate mounds or subglacial volcanic features?. Geosphere, 8(3), 645–653. https://doi.org/10.1130/GES00766.1

Lawver, L. A., Davis, M. B., Wilson, T. J., and Shipboard Scientific Party. (2007). Neotectonic and other features of the Victoria Land Basin, Antarctica, interpreted from multibeam bathymetry data. In A. Cooper, et al. (Eds.), Antarctica: A Keystone in a Changing World—Online Proceedings of the 10th ISAES. Open-File Report 2007-1047. Reston, Virginia: U.S. Geological Survey.222

Magee, W. R. (2011). Magnitude of Extension Across the Central Terror Rift, Antarctica: Structural Interpretations and Balanced Cross Sections. Columbus, Ohio: The Ohio State University.222

Massironi, M., and Kim, Y. S. (2014). Strike-slip faults. In Encyclopedia of Planetary Landforms (pp. 1–12). New York: Springer.222

McClay, K. R. (1995). 2D and 3D analogue modelling of extensional fault structures; templates for seismic interpretation. Petrol. Geosci., 1(2), 163–178. https://doi.org/10.1144/petgeo.1.2.163

Pappa, F., Ebbing, J., and Ferraccioli, F. (2019). Moho depths of Antarctica: Comparison of seismic, gravity, and isostatic results. Geochem., Geophys., Geosyst., 20(3), 1629–1645.222

Rilling, S., Mukasa, S., Wilson, T., Lawver, L., and Hall, C. (2009). New determinations of 40Ar/39Ar isotopic ages and flow volumes for Cenozoic volcanism in the Terror Rift, Ross Sea, Antarctica. J. Geophys. Res.:Solid Earth, 114(B12), B12207. https://doi.org/10.1029/2009JB006303

Rossetti, F., Storti, F., Busetti, M., Lisker, F., Di Vincenzo, G., Läufer, A. L., Rocchi, S., and Salvini, F. (2006). Eocene initiation of Ross Sea dextral faulting and implications for East Antarctic neotectonics. J. Geol. Soc., 163(1), 119–126. https://doi.org/10.1144/0016-764905-005

Salvini, F., Brancolini, G., Busetti, M., Storti, F., Mazzarini, F., and Coren, F. (1997). Cenozoic geodynamics of the Ross Sea region, Antarctica: Crustal extension, intraplate strike-slip faulting, and tectonic inheritance. J. Geophys. Res.:Solid Earth, 102(B11), 24669–24696. https://doi.org/10.1029/97JB01643

Salvini, F., and Storti, F. (1999). Cenozoic tectonic lineaments of the Terra Nova Bay region, Ross embayment, Antarctica. Global Planet. Change, 23(1-4), 129–144. https://doi.org/10.1016/S0921-8181(99)00054-5

Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., and Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213

Sauli, C., Sorlien, C., Busetti, M., De Santis, L., Geletti, R., Wardell, N., and Luyendyk, B. P. (2021). Neogene development of the terror rift, Western Ross Sea, Antarctica. Geochem., Geophys., Geosyst., 22(3), e2020GC009076.222

Shapiro, N. M., and Ritzwoller, M. H. (2004). Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica. Earth Planet. Sci. Lett., 223(1-2), 213–224. https://doi.org/10.1016/j.jpgl.2004.04.011

Talarico, F. M., and Sandroni, S. (2011). Early Miocene basement clasts in ANDRILL AND-2A core and their implications for paleoenvironmental changes in the McMurdo Sound region (western Ross Sea, Antarctica). Global Planet. Change, 78(1-2), 23–35. https://doi.org/10.1016/j.gloplacha.2011.05.002

Trey, H., Cooper, A. K., Pellis, G., Della Vedova, B., Cochrane, G., Brancolini, G., and Makris, J. (1999). Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics, 301(1-2), 61–74. https://doi.org/10.1016/S0040-1951(98)00155-3

Xu, Z., Gao, J. Y., Yang, C. G., and Shen, Z. Y. (2018). A new high-resolution digital bathymetric model of the Ross Sea, Antarctica. Chin. J. Polar Res. (in Chinese), 30(4), 360–369. https://doi.org/10.13679/j.jdyj.20180011

[1]

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030

[2]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[3]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[4]

Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022

[5]

Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026

[6]

YiRen Chang, ZhiYong Xiao, YiChen Wang, ChunYu Ding, Jun Cui, YuZhen Cai, 2021: An updated constraint on the local stratigraphy at the Chang'E-4 landing site, Earth and Planetary Physics, 5, 19-31. doi: 10.26464/epp2021007

[7]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[8]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[9]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[10]

QiZhen Du, WanYu Wang, WenHan Sun, Li-Yun Fu, 2022: Seismic attenuation compensation with spectral-shaping regularization, Earth and Planetary Physics, 6, 259-274. doi: 10.26464/epp2022024

[11]

ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011

[12]

YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui, 2020: Fine debris flows formed by the Orientale basin, Earth and Planetary Physics, 4, 212-222. doi: 10.26464/epp2020027

[13]

Paul Gautier Kamto, Cyrille Mezoue Adiang, Severin Nguiya, Joseph Kamguia, Loudi Yap, 2020: Refinement of Bouguer anomalies derived from the EGM2008 model, impact on gravimetric signatures in mountainous region: Case of Cameroon Volcanic Line, Central Africa, Earth and Planetary Physics, 4, 639-650. doi: 10.26464/epp2020065

[14]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[15]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[16]

YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056

[17]

Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048

[18]

JinHai Zhang, ZhenXing Yao, 2017: Exact local refinement using Fourier interpolation for nonuniform-grid modeling, Earth and Planetary Physics, 1, 58-62. doi: 10.26464/epp2017008

[19]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[20]

Behzad Hemami, Shahla Feizi Masouleh, Ahmad Ghassemi, 2021: 3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal, Earth and Planetary Physics, 5, 559-580. doi: 10.26464/epp2021054

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Neogene faulting and volcanism in the Victoria Land Basin of the Ross Sea, Antarctica

Mei Yue, JinYao Gao, ChunFeng Li, Chao Zhu, XinZhi Fan, Guochao Wu, ZhongYan Shen, Han Shi, XiaoXian Cai, YiDong Guo