Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, and JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics. http://doi.org/10.26464/epp2022012

doi: 10.26464/epp2022012

The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study

1Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China;

2School of Space Science and Physics, Shandong University, Weihai 264209, China;

3Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China;

4CAS Center for Excellence in Comparative Planetology, Hefei 230026, China;

5CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China;

6Staunch Data Analytics Lab, Durham, New Hampshire, USA

Fund Project: Van Allen Probe data are available from the following websites: https://www.rbsp-ect.lanl.gov/data_pub/. We thank Dr. V. Angelopoulos for the use of data from the THEMIS mission. THEMIS data are available at http://themis.ssl.berkeley.edu/data/themis/. We acknowledge CDAWeb (http://cdaweb.gsfc.nasa.gov/) for the use of geomagnetic indices. This work was supported by the National Natural Science Foundation of China under grant 41974188.

Relativistic electron injections are one of the mechanisms of enhancements of relativistic (≥ 0.5 MeV) electrons in the Earth’s outer radiation belt. In this study, we present the statistical observation of 600 keV electron injections in the outer radiation belt using the Van Allen Probes data. Based on the different injection characteristics, 600 keV electron injections in the outer radiation belt are divided into “pulsed electron injections” and “non-pulsed electron injections”. The 600 keV electron injections are observed at over 4.5 < L < 6.4 under the geomagnetic conditions of 450 nT < AE < 1450 nT. L ~ 4.5 is an inward limit for 600 keV electron injections. Before the electron injections, the flux negative L shell gradient for ≤ 0.6 MeV electrons or the low electron fluxes in the injected region are observed. For 600 keV electron injections at different L shells, the source populations from the Earth’s plasma sheet are different. For 600 keV electron injections at higher L shells, the source populations are higher energy electrons (~ 200 keV at X ~ –9 RE), while the source populations for 600 keV electron injections at lower L shells are lower energy electrons (~ 80 keV at X ~ –9 RE). These results are important for our further understanding of electron injections and rapid enhancements of 600 keV electrons in the Earth’s outer radiation belt.

Key words: electron injections, relativistic electrons, the Earth’s outer radiation belt, plasma sheet, the Van Allen Probes

Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., and McPherron, R. L. (1996). Neutral line model of substorms: Past results and present view. Journal of Geophysical Research, 101, 12,975–13,010. https://doi.org/10.1029/95JA03753 Baker, D. N., Jaynes, A. N., Kanekal, S. G., Foster, J. C., Erickson, P. J., Fennell, J. F., et al. (2016). Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015. Journal of Geophysical Research: Space Physics, 121, 6647–6660. https://doi.org/10.1002/2016JA022502 Blake, J. B., Kolasinski, W. A., Fillius, R. W., and Mullen, E. G. (1992). Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991. Geophysical Research Letters, 19(8), 821–824. https://doi.org/10.1029/92GL00624 Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R., Dotan, Y., et al. (2013). The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft. Space Science Reviews, 179(1-4), 383–421. https://doi.org/10.1007/s11214-013-9991-8 Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., Belian, R. D., and Hesse, M. (1998). Substorm electron injections: Geosynchronous observations and test particle simulations. Journal of Geophysical Research, 103, 9235–9248. https://doi.org/10.1029/97JA02635 Boyd, A. J., Spence, H. E., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Baker, D. N., et al. (2014). Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event. Geophysical Research Letters, 41, 2275–2281. https://doi.org/10.1002/2014GL059626 Chen, L., Thorne, R. M., Bortnik, J., Li, W., Horne, R. B., Reeves, G. D., and Fennell, J. F. (2014). Generation of unusually low frequency plasmaspheric hiss. Geophysical Research Letters, 41, 5702–5709. https://doi.org/10.1002/2014GL060628 Dai, L., Wygant, J. R., Cattell, C. A., Thaller, S., Kersten, K., Breneman, A., et al. (2014). Evidence for injection of relativistic electrons into the Earth’s outer radiation belt via intense substorm electric fields. Geophysical Research Letters, 41, 1133–1141. https://doi.org/10.1002/ 2014GL059228 Dai, L., Wang, C., Duan, S., He, Z., Wygant, J. R., Cattell, C. A., et al. (2015). Near-Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations. Geophysical Research Letters, 42, 6170–6179. https://doi.org/10.1002/2015GL064955 Deng, X., Ashour-Abdalla, M., Zhou, M., Walker, R., El-Alaoui, M., Angelopoulos, V., and Schriver, D. (2010). Wave and particle characteristics of earthward electron injections associated with dipolarization fronts. Journal of Geophysical Research, 115, A09225. https://doi.org/10.1029/2009JA015107 Fok, M.-C., Moore, T. E., and Spjeldvik, W. N. (2001). Rapid enhancement of radiation belt electron fluxes due to substorm dipolarization of the geomagnetic field. Journal of Geophysical Research, 106, 3873–3882. https://doi.org/10.1029/2000JA000150 Foster, J. C., Erickson, P. J., Baker, D. N., Claudepierre, S. G., Kletzing, C. A., Kurth, W. et al., (2014). Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations. Geophysical Research Letters, 41, 20–25, https://doi.org/10.1002/2013GL058438 Foster, J. C., Erickson, P. J., Omura, Y., Baker, D. N., Kletzing, C. A., and Claudepierre, S. G. (2017). Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. Journal of Geophysical Research: Space Physics, 122, 324–339. https://doi.org/10.1002/2016JA023429 Friedel, R., Korth, A., and Kremser, G. (1996). Substorm onsets observed by CRRES: Determination of energetic particle source regions. Journal of Geophysical Research, 101(A6), 13,137– 13,154. https://doi.org/10.1029/96ja00399 Fu, H. S., Cao, J. B., Cully, C. M., Khotyaintsev, Y. V., Vaivads, A., Angelopoulos, V., et al. (2014). Whistler-mode waves inside flux pileup region: Structured or unstructured? Journal of Geophysical Research: Space Physics, 119, 9089–9100. https://doi.org/10.1002/2014JA020204 Gabrielse, C., Angelopoulos, V., Runov, A., and Turner, D. L. (2012). The effects of transient, localized electric fields on equatorial electron acceleration and transport toward the inner magnetosphere. Journal of Geophysical Research, 117, A10213. https://doi.org/10.1029/2012JA017873 Ganushkina, N. Y., Amariutei, O. A., Shprits, Y. Y., and Liemohn, M. W. (2013). Transport of the plasma sheet electrons to the geostationary distances. Journal of Geophysical Research: Space Physics, 118, 82–98. https://doi.org/10.1029/2012JA017923 Glocer, A., Fok, M.-C., Nagai, T., Tóth, G., Guild, T., and Blake, J. (2011). Rapid rebuilding of the outer radiation belt. Journal of Geophysical Research, 116, A09213. https://doi.org/10.1029/2011JA016516 Horne, R. B., and Thorne, R. M. (1998). Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophysical Research Letters, 25(15), 3011–3014. https://doi.org/10.1029/98GL01002 Huang, S. Y., Zhou, M., Deng, X. H., Yuan, Z. G., Pang, Y., Wei, Q., et al. (2012). Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster. Annales de Geophysique, 30, 97–107. https://doi.org/10.5194/angeo-30-97-2012 Hudson, M., Jaynes, A., Kress, B. T., Li, Z., Patel, M., Shen, X.-C., et al. (2017). Simulated prompt acceleration of multi-MeV electrons by the 17 March 2015 interplanetary shock. Journal of Geophysical Research: Space Physics, 122, 10,036–10,046. https://doi.org/10.1002/2017JA024445 Ingraham, J. C., Cayton, T. E., Belian, R. D., Christensen, R. A., Friedel, R. H. W., Meier, M. M., Reeves, G. D., and Tuszewski, M. (2001). Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991. Journal of Geophysical Research, 106, 25,759–25,776. https://doi.org/10.1029/2000JA000458 Kanekal, S. G., Baker, D. N., Fennell, J. F., Jones, A., Schiller, Q., Richardson, I. G., et al. (2016). Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock. Journal of Geophysical Research: Space Physics, 121, 7622–7635, https://doi.org/10.1002/2016JA022596 Kasahara, Y., Miyoshi, Y., Omura, Y., Verkhoglyadova, O. P., Nagano, I., Kimura, I., and Tsurutani, B. T. (2009). Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm “recovery” phase. Geophysical Research Letters, 36, L01106, https://doi.org/10.1029/2008GL036454 Kim, H.-J., Chan, A. A., Wolf, R. A., and Birn, J. (2000). Can substorms produce relativistic outer belt electrons? Journal of Geophysical Research, 105, 7721–7736. https://doi.org/10.1029/1999JA900465 Kim, H.-J., Lee, D.-Y., Wolf, R., Bortnik, J., Kim, K.-C., Lyons, L., et al. (2021). Rapid injections of MeV electrons and extremely fast step-like outer radiation belt enhancements. Geophysical Research Letters, 48, e2021GL093151. https://doi.org/10.1029/2021GL093151 Khoo, L.‐Y., Li, X., Zhao, H., Chu, X., Xiang, Z., and Zhang, K. (2019). How sudden, intense energetic electron enhancements correlate with the innermost plasmapause locations under various solar wind drivers and geomagnetic conditions. Journal of Geophysical Research: Space Physics, 124, 8992–9002. https://doi.org/10.1029/2019JA027412 Khotyaintsev, Y. V., Cully, C. M., Vaivads, A., André, M., & Owen, C. J. (2011). Plasma jet braking: Energy dissipation and nonadiabatic electrons. Physical Review Letters, 106, 165001. https://doi.org/10.1103/PhysRevLett.106.165001 Kress, B. T., Hudson, M. K., & Paral, J. (2014). Rebuilding of the Earth’s outer electron belt during 8–10 October 2012. Geophysical Research Letters, 41, 749–754. https://doi.org/10.1002/2013GL058588 Le Contel, O., Roux, A., Jacquey, C., Robert, P., Berthomier, M., Chust, T., et al. (2009). Quasi-parallel whistler mode waves observed by THEMIS during near-Earth dipolarizations. Annales de Geophysique, 27(6), 2259–2275. https://doi.org/10.5194/angeo-27-2259-2009 Li, X., D. N. Baker, M. Temerin, G. D. Reeves, & R. D. Belian (1998). Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms. Geophysical Research Letters, 25, 3763–3766. https://doi.org/10.1029/1998GL900001 Li, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N., et al. (2014). Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 119, 4681–4693. https://doi.org/10.1002/2014JA019945 Liu, J., Angelopoulos, V., Runov, A., Zhou, X.-Z. (2013). On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. Journal of Geophysical Research: Space Physics, 118, 2000–2020. https://doi.org/10.1002/jgra.50092 Liu, J., Angelopoulos, V., Zhang, X.-J., Turner, D. L., Gabrielse, C., Runov, A., et al. (2016). Dipolarizing flux bundles in the cis-geosynchronous magnetosphere: Relationship between electric fields and energetic particle injections. Journal of Geophysical Research: Space Physics, 121, 1362–1376. https://doi.org/10.1002/2015JA021691 Lui, A. T. Y. (1991). A synthesis of magnetospheric substorm models. Journal of Geophysical Research, 96, 1849–1856. https://doi.org/10.1029/90JA02430 Lui, A. T. Y., Zong, Q.-G., Wang, C., & Dunlop, M. W. (2012). Electron source associated with dipolarization at the outer boundary of the radiation belts: Non-storm cases. Journal of Geophysical Research, 117, A10224. https://doi.org/10.1029/2012JA018084 Liu, S., Chen, M. W., Lyons, L. R., Korth, H., Albert, J. M., Roeder, J. L., & Anderson, P. C., (2003). Contribution of convective transport to stormtime ring current electron injection. Journal of Geophysical Research, 107(A10), 1372, https://doi.org/10.1029/2003JA010004 Meredith, N. P., Cain, M., Horne, R. B., Thorne, R. M., Summers, D., & Anderson, R. R. (2003). Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. Journal of Geophysical Research, 108(A6), 1248. https://doi.org/10.1029/2002JA009764 Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., & Anderson, R. R. (2004). Substorm dependence of plasmaspheric hiss. Journal of Geophysical Research, 109, A06209. https://doi.org/10.1029/2004JA010387 Mithaiwala, M. J., & Horton, W. (2005). Substorm injections produce sufficient electron energization to account for MeV flux enhancements following some storms. Journal of Geophysical Research, 110, A07224. https://doi.org/10.1029/2004JA010511 Miyoshi, Y., Morioka, A., Obara, T., Misawa, H., Nagai, T., & Kasahara, Y. (2003). Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations. Journal of Geophysical Research, 108(A1), 1004. https://doi.org/10.1029/2001JA007542 Miyoshi, Y., Kataoka, R., Kasahara, Y., Kumamoto, A., Nagai, T., & Thomsen, M. F. (2013). High-speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves. Geophysical Research Letters, 40, 4520–4525. https://doi.org/10.1002/grl.50916 Moore, T. E., Arnoldy, R. L., Feynman, J., & Hardy, D. A. (1981). Propagating substorm injection fronts. Journal of Geophysical Research, 86, 6713–6726. https://doi.org/10.1029/JA086iA08p06713 Motoba, T., Ohtani, S., Claudepierre, S. G., Reeves, G. D., Ukhorskiy, A. Y., & Lanzerotti, L. J. (2020). Dynamic properties of particle injections inside geosynchronous orbit: A multisatellite case study. Journal of Geophysical Research: Space Physics, 125, e2020JA028215. https://doi.org/10.1029/2020JA028215 Mourenas, D., Artemyev, A. V., Agapitov, O. V., & Krasnoselskikh, V. (2014). Consequences of geomagnetic activity on energization and loss of radiation belt electrons by oblique chorus waves. Journal of Geophysical Research: Space Physics, 119, 2775–2796. https://doi.org/10.1002/2013JA019674 Mozer, F. S., Agapitov, O., Krasnoselskikh, V., Lejosne, S., Reeves, G. D., & Roth, I. (2014). Direct observation of radiation belt electron acceleration from electron volt energies to megavolts by non-linear whistlers. Physical Review Letters, 113, 035001. https://doi.org/10.1103/PhysRevLett.113.035001 Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Rème, H., et al. (2002). Motion of the dipolarization front during a flow burst event observed by Cluster. Geophysical Research Letters, 29(20), 1942. https://doi.org/10.1029/2002GL015763 Nakamura, R., Retinó, A., Baumjohann, W., Volwerk, M., Erkaev, B. K. N., Lucek, E. A., et al. (2009). Evolution of dipolarization in the near-Earth current sheet induced by earthward rapid flux transport. Annales de Geophysique, 27(4), 1743–1754. https://doi.org/10.5194/angeo-27-1743-2009 Northrop, T. G. (1963). Adiabatic charged‐particle motion. Reviews of Geophysics and Space Physics, 1, 283– 304. https://doi.org/10.1029/RG001i003p00283 Omura, Y., Miyashita, Y., Yoshikawa, M., Summers, D., Hikishima, M., Ebihara, Y., & Kubota, Y. (2015). Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere. Journal of Geophysical Research: Space Physics, 120, 9545–9562. https://doi.org/10.1002/2015JA021563 Ohtani, S., Takahashi, K., Zanetti, L. J., Potemra, T. A., McEntire, R. W., & Iijima, T. (1992). Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration: Explosive growth phase. Journal of Geophysical Research, 97(A12), 19311– 19324. https://doi.org/10.1029/92JA01832 Reeves, G. D., Fritz, T. A., Cayton, T. E., & Belian, R. D. (1990). Multi-satellite measurements of the substorm injection region. Geophysical Research Letters, 17, 2015–2018. https://doi.org/10.1029/GL017i011p02015 Reeves, G. D., Henderson, M. G., McLachlan, P. S., Belian, R. D., Friedel, R. H. W., & Korth, A. (1996). Radial propagation of substorm injections. In E. J. Rolfe, & B. Kaldeich (Eds.), Proceedings of the Third International Conference on Substorms, Versailles, France, 12–17 May 1996 (pp. 579–584). Noordwijk, Netherlands: Eur. Space Agency. Reeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H. W., Funsten, H. O., et al. (2013). Electron Acceleration in the Heart of the Van Allen Radiation Belts. Science, 341(6149), 991–994. https://doi.org/10.1126/science.1237743 Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., et al. (2009). THEMIS observations of an earthward-propagating dipolarization front. Geophysical Research Letters, 36, L14106. https://doi.org/10.1029/2009GL038980 Runov, A., Angelopoulos, V., Zhou, X.-Z., Zhang, X.-J., Li, S., Plaschke, F., and Bonnell, J. (2011). A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 116, A05216. https://doi.org/10.1029/2010JA016316 Schiller, Q., Kanekal, S. G., Jian, L. K., Li, X., Jones, A., Baker, D. N., Jaynes, A., and Spence, H. E. (2016), Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations. Geophysical Research Letters, 43, 12,317–12,324. https://doi.org/10.1002/2016GL071628 Sergeev, V. A., Shukhtina, M. A., Rasinkangas, R., Korth, A., Reeves, G. D., Singer, H. J., Thomsen, M. F., and Vagina, L. I. (1998). Event study of deep energetic particle injections during substorm. Journal of Geophysical Research, 103(A5), 9217–9234. https://doi.org/10.1029/97JA03686 Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., et al. (2013). Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Radiation Belt Storm Probes (RBSP) Mission. Space Science Reviews, 179(1–4), 311–336. https://doi.org/10.1007/s11214-013-0007-5 Su, Z., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., Zong, Q. G., et al. (2014). Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt. Journal of Geophysical Research: Space Physics, 119, 10,023–10,040. https://doi:10.1002/2014JA020709 Su, Z., Liu, N., Zheng, H., Wang, Y., and Wang, S. (2018). Multipoint observations of nightside plasmaspheric hiss generated by substorm-injected electrons. Geophysical Research Letters, 45, 10,921–10,932. https://doi.org/10.1029/2018GL079927 Tang, C. L., Li, Z. Y., Angelopoulos, V., Mende, S. B., Glassmeier, K. H., Donovan, E., et al. (2009). THEMIS observations of the near-Earth plasma sheet during a substorm. Journal of Geophysical Research, 114, A09211. https://doi.org/10.1029/2008JA013729 Tang, C. L., Angelopoulos, V., Runov, A., Russell, C. T., Frey, H., Glassmeier, K. H., et al. (2010). Precursor activation and substorm expansion associated with observations of a dipolarization front by Time History of Events and Macroscale Interactions During Substorms (THEMIS). Journal of Geophysical Research, 115, A07215. https://doi.org/10.1029/2009JA014879 Tang, C. L., Lu, L., Zhou, M., and Yao, Z. H. (2013). THEMIS observations of electron acceleration associated with the evolution of substorm dipolarization in the near-Earth tail. Journal of Geophysical Research: Space Physics, 118, 4237–4247. https://doi.org/10.1002/jgra.50418 Tang, C. L., Zhou, M., Yao, Z. H., and Shi, F. (2016a). Electron acceleration associated with the magnetic flux pileup regions in the near-Earth plasma sheet: A multicase study. Journal of Geophysical Research: Space Physics, 121, 4331–4342. https://doi.org/10.1002/2016JA022406 Tang, C. L., Zhang, J.-C., Reeves, G. D., Su, Z. P., Baker, D. N., Spence, H. E., et al. (2016b). Prompt enhancement of the Earth’s outer radiation belt due to substorm electron injections. Journal of Geophysical Research: Space Physics, 121, 11,826–11,838. https://doi.org/10.1002/2016JA023550 Tang, C. L., Wang, Y. X., Ni, B., Su, Z. P., Reeves, G. D., Zhang, J.-C., et al. (2017a). The effects of magnetospheric processes on relativistic electron dynamics in the Earth’s outer radiation belt. Journal of Geophysical Research: Space Physics, 122, 9952–9968. https://doi.org/10.1002/2017JA024407 Tang, C. L., Wang, Y. X., Ni, B., Zhang, J.-C., Reeves, G. D., Su, Z. P., et al. (2017b). Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study. Journal of Geophysical Research: Space Physics, 122, 5261–5276. https://doi.org/10.1002/2017JA023905 Tang, C. L., Xie, X. J., Ni, B., Su, Z. P., Reeves, G. D., Zhang, J.-C., et al. (2018). Rapid enhancements of the seed populations in the heart of the Earth’s outer radiation belt: A multicase study. Journal of Geophysical Research: Space Physics, 123, 4895–4907. https://doi.org/10.1029/2017JA025142 Tang, C. L., Wang, X., and Zhou, M. (2021). Electron pitch angle distributions around dipolarization fronts at the off magnetic equator. Journal of Geophysical Research: Space Physics, 125, e2020JA028787. https://doi.org/10.1029/2020JA028787 Taylor, M. G. G. T., Friedel, R. H. W., Reeves, G. D., Dunlop, M. W., Fritz, T. A., Daly, P. W., & Balogh, A. (2004). Multisatellite measurements of electron phase space density gradients in the Earth's inner and outer magnetosphere. Journal of Geophysical Research, 109, A05220. https://doi.org/10.1029/2003JA010294 Thorne, R. M., Church, S. R., and Gorney, D. J. (1979). On the origin of plasmaspheric hiss: The importance of wave propagation and the plasmapause. Journal of Geophysical Research, 84(A9), 5241–5247. https://doi.org/10.1029/JA084iA09p05241 Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., et al. (2013). Rapid local acceleration of relativistic radiation belt electrons by magnetospheric chorus. Nature, 504(7480), 411–414. https://doi.org/10.1038/nature12889 Tsurutani, B. T., Horne, R. B., Pickett, J. S., Santolik, O., Schriver, D., and Verkhoglyadova O. P. (2010). Introduction to the special section on Chorus: Chorus and its role in space weather. Journal of Geophysical Research, 115, A00F01. https://doi.org/10.1029/2010JA015870 Turner, D. L., Claudepierre, S. G., Fennell, J. F., O’Brien, T. P., Blake, J. B., Lemon, C., et al. (2015). Energetic electron injections deep into the inner magnetosphere associated with substorm activity. Geophysical Research Letters, 42, 2079–2087. https://doi.org/10.1002/2015GL063225 Turner, D. L., Fennell, J. F., Blake, J. B., Clemmons, J. H., Mauk, B. H., Cohen, I. J., et al. (2016). Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission. Geophysical Research Letters, 43, 7785–7794. https://doi.org/10.1002/2016GL069691 Tverskoy, B. A. (1969). Main mechanisms in the formation of the Earth's radiation belts. Reviews of Geophysics and Space Physics, 7, 219– 231. https://doi.org/10.1029/RG007i001p00219 Zhou, M., Ashour-Abdalla, M., Deng, X., Schriver, D., El-Alaoui, M., & Pang, Y. (2009). THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail. Geophysical Research Letters, 36, L20107. https://doi.org/10.1029/2009GL040663

[1]

ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037

[2]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[3]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[4]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[5]

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051

[6]

Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006

[7]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[8]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060

[9]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[10]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[11]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[12]

Jing Huang, Meng Zhou, HuiMin Li, XiaoHua Deng, Jiang Liu, ShiYong Huang, 2019: Small-scale dipolarization fronts in the Earth′s magnetotail, Earth and Planetary Physics, 3, 358-364. doi: 10.26464/epp2019036

[13]

Chao Xiao, WenLong Liu, DianJun Zhang, Zhao Zhang, 2020: A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements, Earth and Planetary Physics, 4, 266-273. doi: 10.26464/epp2020031

[14]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[15]

XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052

[16]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[17]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[18]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[19]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[20]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study

ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, and JiChun Zhang