Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Maduo earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics. http://doi.org/10.26464/epp2022007

doi: 10.26464/epp2022007

Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Maduo earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data

1 School of Geomatics Science and Technology, Nanjing Tech University, Nanjing, China;

2 COMET, School of Engineering, Newcastle University, Newcastle, UK;

3 Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Corresponding author: Shuai Wang,

Fund Project: We thank Editor Wei Leng and two anonymous reviewers for their comments and suggestions. This work is supported by the Natural Science Foundation of Jiangsu Province (grant no. SBK2020043202) and by Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University (No.19-01-08). Figures were prepared using Generic Mapping Tools (Wessel et al., 2013). Sentinel-1 interferograms are processed with software GAMMA (Wegnüller et al. 2016).

On 21 May 2021 (UTC), an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau. The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since the 2008 Wenchuan earthquake and in proximity to the seismic gaps on the east Kunlun fault. Here we use satellite interferometric synthetic aperture radar data and subpixel offset observations along the range directions to characterize the coseismic deformation of the earthquake. Rang offset displacements depict clear surface ruptures with a total length of ~170 km involving two possible activated fault segments in the earthquake. Coseismic modeling results indicate that the earthquake is dominated by left-lateral strike-slip motions of up to 7 m within top 12 km of the crust. The well-resolved slip variations are characterized by five major slip patches along strike and 64% of shallow slip deficit, suggesting a young seismogenic structure. Spatial-temporal changes of postseismic deformation are mapped from the early 6-day and 24-day InSAR observations, and are well explained by time-dependent afterslip models. Analysis of GPS velocity profiles and strain rates suggests that the eastward extrusion of plateau is diffusely distributed across the east Bayan Har block, but showing significant lateral heterogeneities as evidenced by magnetotelluric observations. The block-wide distributed deformation of the east Bayan Har block along with the significant co- and post-seismic stress loading from the Maduo earthquake imply high seismic risks on regional faults, especially the Tuosuo Lake and Maqin-Maqu segments of the Kunlun fault that known as seismic gaps.

Key words: Maduo earthquake, Bayan Har block, synthetic aperture radar data, co- and post-seismic slip, block-wide distributed deformation, seismic risk

Avouac, J. P., & Tapponnier, P. (1993). Kinematic model of active deformation in central Asia. Geophysical Research Letters, 20(10), 895-898. Barnhart, W. D., Briggs, R. W., Reitman, N. G., Gold, R. D., & Hayes, G. P. (2015). Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7. 7 Balochistan, Pakistan earthquake. Earth and Planetary Science Letters, 420, 1-11. Bassett, D., Sandwell, D. T., Fialko, Y., & Watts, A. B. (2016). Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature, 531(7592), 92-96. Chen, L., Wang, H., Ran, Y., Sun, X., Su, G., Wang, J., Tan, X., Li, Z., & Zhang, X. (2010). The MS 7.1 Yushu earthquake surface rupture and large historical earthquakes on the Garzê-Yushu fault. Chinese Science Bulletin, 55(31), 3504-3509. Der Woerd, J. V., Tapponnier, P., J. Ryerson, F., Meriaux, A. S., Meyer, B., Gaudemer, Y., Finkel, R., Caffee, M., Zhao, G., & Xu, Z. (2002). Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International, 148(3), 356-388. Diao, F., Xiong, X., Wang, R., Walter, T. R., Wang, Y., & Wang, K. (2019). Slip rate variation along the Kunlun fault (Tibet): Results from new GPS observations and a viscoelastic earthquake‐cycle deformation model. Geophysical Research Letters, 46(5), 2524-2533. Duvall, A. R., & Clark, M. K. (2010). Dissipation of fast strike‐slip faulting within and beyond northeastern Tibet. Geology, 38(3), 223–226. Elliott, J. R., Walters, R. J., England, P. C., Jackson, J. A., Li, Z., & Parsons, B. (2010). Extension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology. Geophysical Journal International, 183(2), 503-535. England, P., & Molnar, P. (1997). Active deformation of Asia: From kinematics to dynamics. Science, 278 (5338), 647-650. Fialko, Y., Sandwell, D., Simons, M., & Rosen, P. (2005). Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435(7040), 295-299. Guo, J., Lin, A., Sun, G., & Zheng, J. (2007). Surface ruptures associated with the 1937 M 7.5 Tuosuo Lake earthquake and the 1963 M7.0 Alake Lake earthquake and the paleoseismicity along the Tuosuo Lake segment of the Kunlun fault, northern Tibet. Bulletin of the Seismological Society of America, 97(2), 474–496. https://doi.org/10.1785/0120050103 He, W. G., Xiong, Z., Yuan, D. Y., Ge, W. P., & Liu, X. W. (2006). Palaeo‐earthquake study on the Maqu fault of east Kunlun active fault. Earthquake Research in China, 2, 126-134. Helmstetter, A., &Shaw, B. E. (2009). Afterslip and aftershocks in the rate-and-state friction law. Journal of Geophysical Research, 114, B01308. Huang S., Yao H., Lu Z, Tian X., Zheng Y., Wang R., Luo S., & Feng J. (2020). High-resolution 3-D shear-wave velocity model of the Tibetan Plateau: implications for crustal deformation and porphyry Cu deposit formation, Journal of Geophysical Research: Solid Earth, 125(7), e2019JB019215. Jiang, G., Xu, C., Wen, Y., Liu, Y., Yin, Z., & Wang, J. (2013). Inversion for coseismic slip distribution of the 2010 M w 6.9 Yushu Earthquake from InSAR data using angular dislocations. Geophysical Journal International, 194(2), 1011-1022. Kirby, E., Harkins, N., Wang, E., Shi, X., Fan, C., & Burbank, D. (2007). Slip rate gradients along the eastern Kunlun fault. Tectonics, 26(2). Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0-A 1-degree global model of Earth’s crust. In Geophys. Res. Abstr (Vol. 15, p. 2658). Li, S., Wdowinski, S., Hsu, Y. J., & Shyu, J. B. H. (2020a). Earthquake interactions in central Taiwan: Probing Coulomb stress effects due to ML ≥ 5.5 earthquakes from 1900 to 2017. Journal of Geophysical Research: Solid Earth, 125(8), e2019JB019010. Li, X., Xu, W., Jónsson, S., Klinger, Y., & Zhang, G. (2020b). Source model of the 2014 MW 6.9 Yutian earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images. Seismological Research Letters, 91(6), 3161-3170. Li, Y., Huang, L., Ding, R., Yang, S., Liu, L., Zhang, S., & Liu, H. (2021a). Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards, Natural Hazard Research, https://doi.org/10.1016/j.nhres.2021.06.003. Li, Z., Ding, K., Zhang, P., Wen, Y., Zhao, L., & Chen, J. (2021b). Co-seismic deformation and slip distribution of 2021 Mw 7.4 Madoi earthquake from GNSS observation. Geomatics and Information Science of Wuhan University. doi:10.13203/j.whugis20210301. Li, Z., Li, W., Li, T., Xu, Y., Su, P., Guo, P., Sun, H., Ha, G., Chen, G., Yuan, Z., Li, Z., Li, X., Yang, L., Ma, Z., Yao, S., Xiong, R,., Zhang, Y., Gai, H., Yin, X., Xu, W., & Dong, J. (2021c). Seismogenic fault and coseismic surface deformation of the Maduo MS 7.4 earthquake in Qinghai, China: A quick report. Seismology and Geology, 43(3):722-737. Lin, A., & Guo, J. (2008). Nonuniform slip rate and millennial recurrence interval of large earthquakes along the eastern segment of the Kunlun fault, northern Tibet. Bulletin of the Seismological Society of America, 98(6), 2866–2878. https://doi.org/10.1785/0120070193 Lozos, J. C., Oglesby, D. D., Duan, B., & Wesnousky, S. G. (2011). The effects of double fault bends on rupture propagation: A geometrical parameter study. Bulletin of the Seismological Society of America, 101(1), 385-398. Marone, C. J., Scholtz, C. H., & Bilham, R. (1991). On the mechanics of earthquake afterslip. Journal of Geophysical Research: Solid Earth, 96(B5), 8441-8452. Meyer, B., Tapponnier, P., Bourjot, L., Metivier, F., Gaudemer, Y., Peltzer, G., Guo, S., & Chen, Z. (1998). Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135(1), 1-47. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135-1154. Pan, J., Bai, M., Li, C., Liu, F., Li, H., Liu, D., Chevalier, M., Wu, K., Wang, P., Lu, H., Chen, P., Li, C. (2021). Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) Ms 7.4 earthquake. Acta Geologica Sinica, 95(6):1655~1670. Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., & Liu, Y. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788-790. Ryder, I., Parsons, B., Wright, T. J., & Funning, G. J. (2007). Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling. Geophysical Journal International, 169(3), 1009-1027. Sangha, S., Peltzer, G., Zhang, A., Meng, L., Liang, C., Lundgren, P., & Fielding, E. (2017). Fault geometry of 2015, MW 7. 2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data. Earth and Planetary Science Letters, 462, 132-141. Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. Shen, Z. K., Wang, M., Zeng, Y., & Wang, F. (2015). Optimal interpolation of spatially discretized geodetic data. Bulletin of the Seismological Society of America, 105(4), 2117-2127. Socquet, A., Hollingsworth, J., Pathier, E., & Bouchon, M. (2019). Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nature Geoscience, 12(3), 192-199. Sun, J., Yue, H., Shen, Z., Fang, L., Zhan, Y., & Sun, X. (2018). The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system. Geophysical Research Letters, 45, 2230–2240. Tapponnier, P., Peltzer, G. L. D. A. Y., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611-616. Wang, H., Wright, T. J., Liu-Zeng, J., & Peng, L. (2019). Strain rate distribution in south-central Tibet from two decades of InSAR and GPS. Geophysical Research Letters, 46. Wang, M., & Shen, Z. K. (2020). Present‐day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018774. Wang, Q., Qiao, X., Lan, Q., Freymueller, J., Yang, S., Xu, C., Yang, Y., You, X., Tan, K, & Chen, G. (2011). Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan, Nature Geoscience, 4, 634–640. Wang, R., Lorenzo-Martin, F., & Roth, F. (2006). PSGRN/PSCMP—a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computers & Geosciences, 32(4), 527-541. Wang, S., Xu, C., Wen, Y., Yin, Z., Jiang, G., & Fang, L. (2017). Slip model for the 25 November 2016 Mw 6.6 Aketao earthquake, western China, revealed by Sentinel-1 and ALOS-2 observations. Remote Sensing, 9(4), 325. Wang, S., Xu, W., Xu, C., Yin, Z., Bürgmann, R., Liu, L., & Jiang, G. (2019). Changes in groundwater level possibly encourage shallow earthquakes in central Australia: The 2016 Petermann Ranges earthquake. Geophysical Research Letters, 46(6), 3189-3198. Wang, S., Jiang, G., Weingarten, M., & Niu, Y. (2020). InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning (China) earthquake sequence. Geophysical Research Letters, 46, e2020GL087603. https://doi.org/ 10.1029/2020GL087603 Wang, W., Fang, L., Wu, J., Tu, H., Chen, Li., Lai, G., Zhang, L. (2021). Aftershock relocation of the 2021 Maduo Ms 7.4 earthquake sequence. Scientia Sinica Terrae, https://doi.org/10.1360/SSTe-2021-0149. Wegnüller, U., Werner, C., Strozzi, T., Wiesmann, A., Frey, O., & Santoro, M. (2016). Sentinel‐1 support in the GAMMA software. Procedia Computer Science, 100, 1305–1312. Wen, X., Yi, G., & Xu, X. (2007). Background and precursory seismicities along and surrounding the Kunlun fault before the Ms 8.1, 2001, Kokoxili earthquake, China. Journal of Asian Earth Sciences, 30(1), 63-72. Wen, Y., Li, Z., Xu, C., Ryder, I., & Bürgmann, R. (2012). Postseismic motion after the 2001 Mw 7.8 Kokoxili earthquake in Tibet observed by InSAR time series. Journal of Geophysical Research: Solid Earth, 117(B8). Wessel, P., Smith, W. H., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45), 409-410. Xu, X., Yu, G., Klinger, Y., Tapponnier, P., & Van Der Woerd, J. (2006). Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7. 8), northern Tibetan Plateau, China. Journal of Geophysical Research: Solid Earth, 111(B5). Zhan, Y., Liang, M., Sun, X., Huang, F., Zhao, L., Gong, Y., Han, J., Li, C., Zhang, P, Zhang, H. (2021). Deep structure and seimogenic pattern of the 2021.5.22 Madoi (Qinghai) Ms 7.4 earthquake. Chinese Journal of Geophysics, 64(7), 2232-2252. Zhang, P. Z., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Sun, H., & You, X. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809-812. Zhang, Y., Feng, W., Li, X., Liu, Y., Ning, J., & Huang, Q. (2021). Joint Inversion of Rupture across a Fault Stepover during the 8 August 2017 Mw 6.5 Jiuzhaigou, China, Earthquake. Seismological Research Letters, doi: https://doi.org/10.1785/0220210084. Zheng, G., Lou, Y., Wang, H., Geng, J., & Shi, C. (2018). Shallow seismicity forecast for the India‐Eurasia collision zone based on geodetic strain rates. Geophysical Research Letters, 45(17), 8905-8912. Zhu Y., Diao F., Fu Y., Liu C., & Xiong X. (2021a). Slip rate of the seismogenic fault of the 2021 Maduo earthquake inferred from GPS observations. Science China Earth Sciences, 64, https://doi.org/10.1007/s11430-021-9808-0 Zhu, L., Ji, L., & Jiang, F. (2020). Variations in locking along the east Kunlun fault, Tibetan Plateau, China, using GPS and leveling data. Pure and Applied Geophysics, 177(1), 215-231. Zhu, L., Ji, L., & Liu, C. (2021b). Interseismic slip rate and locking along the Maqin–Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, based on Sentinel-1 images. Journal of Asian Earth Sciences, 211, 104703.

[1]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[2]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[3]

Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

[4]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[5]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[6]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[7]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[8]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[9]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[10]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[11]

YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056

[12]

Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048

[13]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

[14]

Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047

[15]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[16]

GuangXing Ding, JiaWei Li, XiaoXin Zhang, Fei He, LingPing He, KeFei Song, Liang Sun, Shuang Dai, ShiJie Liu, Bo Chen, Chao Yu, XiuQing Hu, SongYan Gu, ZhongDong Yang, Peng Zhang, 2021: Wide-field aurora imager onboard Fengyun satellite: Data products and validation, Earth and Planetary Physics, 5, 73-78. doi: 10.26464/epp2021003

[17]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[18]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[19]

SiYu Miao, HaiJiang Zhang,YuYang Tan,Ye Lin, 2021: High resolution seismic waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics. doi: 10.26464/epp2021056

[20]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Maduo earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data

Shuai Wang, Chuang Song, ShanShan Li, Xing Li