Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Franco, A. M. S., Echer, E., Bolzan, M. J. A., and Fraenz, M. (2022). Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations. Earth Planet. Phys., 6(1), 28–41.

2022, 6(1): 28-41. doi: 10.26464/epp2022006


Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations


National Institute for Space Research (INPE), Sao Jose dos Campos, Brazil


Federal University of Jatai, Jatai, Brazil


Max Planck Institute for Solar System Research, Göttingen, Germany

Corresponding author: A. M. S. Franco, adriane.marquesds@gmail.comE. Echer,

Received Date: 2021-07-12
Web Publishing Date: 2021-12-07

Planetary magnetosheaths are characterized by high plasma wave and turbulence activity. The Martian magnetosheath is no exception; both upstream and locally generated plasma waves have been observed in the region between its bow shock and magnetic boundary layer, its induced magnetosphere. This statistical study of wave activity in the Martian magnetosheath is based on 12 years (2005–2016) of observations made during Mars Express (MEX) crossings of the planet’s magnetosheath — in particular, data on electron density and temperature data collected by the electron spectrometer (ELS) of the plasma analyzer (ASPERA-3) experiment on board the MEX spacecraft. A kurtosis parameter has been calculated for these plasma parameters. This value indicates intermittent behavior in the data when it is higher than 3 (the value for a normal or Gaussian distribution). The variation of wave activity occurrence has been analyzed in relation to solar cycle, Martian orbit, and distance to the bow shock. Non-Gaussian properties are observed in the magnetosheath of Mars on all analyzed scales, especially in those near the proton gyrofrequency in the upstream region of the Martian magnetosphere. We also report that non-Gaussian behavior is most prominent at the smaller scales (higher frequencies). A significant influence of the solar cycle was also observed; the kurtosis parameter is higher during declining and solar maximum phases, when the presence of disturbed solar wind conditions, caused by large scale solar wind structures, increases. The kurtosis decreases with increasing distance from the bow shock, which indicates that the intermittence level is higher near the bow shock. In the electron temperature data the kurtosis is higher near the perihelion due to the higher incidence of EUV when the planet is closer to the Sun, which causes a more extended exosphere, and consequently increases the wave activity in the magnetosheath and its upstream region. The extended exosphere seems to play a lower effect in the electron density data.

Key words: Mars magnetosheath, kurtosis, ULF waves

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., Mcfadden, J., Curtis, D. W., Mitchell, D., … Ness, N. F. (1998). Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor Mission. Science, 279(5357), 1676–1680.

Andrés, N., Romanelli, N., Hadid, L. Z., Sahraoui, F., DiBraccio, G., and Halekas, J. (2020). Solar wind turbulence around Mars: Relation between the energy cascade Rate and the Proton Cyclotron Waves Activity. Astrophys. J., 902(2), 134.

Balogh, A., Bothmer, V., Crooker, N. U., Forsyth, R. J., Gloeckler, G., Hewish, A., Hilchenbach, M., Kallenbach, R., Klecker, B., … Mikić, Z. (1999). The solar origin of corotating interaction regions and their formation in the inner heliosphere. Space Sci. Rev., 89, 141–178.

Banerjee, S., Hadid, L. Z., Sahraoui, F., and Galtier, S. (2016). Scaling of compressible magnetohydrodynamic turbulence in the fast solar wind. Astrophys. J. Lett., 829(2), L27.

Barabash, S. , Lundin, R. , Andersson, H. , Gimholt, J. , Holmström, M. , Norberg, O. , Yamauchi, M. , Asamura, K. , Coates, A. J. , … Bochsler, P. (2004). ASPERA-3: Analyser of space plasmas and energetic ions for mars express. In A. Wilson (Ed. ), Mars Express: The Scientific Payload (pp. 121-139). Noordwijk, Netherlands: ESA Publications Division.222

Barabash, S., Lundin, R., Andersson, H., Brinkfeldt, K., Grigoriev, A., Gunell, H., Holmström, M., Yamauchi, M., Asamura, K., … Thocaven, J. J. (2006). The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars express mission. Space Sci. Rev., 126, 113–164.

Bertucci, C., Romanelli, N., Chaufray, J. Y., Gomez, D., Mazelle, C., Delva, M., Modolo, R., González-Galindo, F., and Brain, D. A. (2013). Temporal variability of waves at the proton cyclotron frequency upstream from Mars: Implications for Mars distant hydrogen exosphere. Geophys. Res. Lett., 40(15), 3809–3813.

Bohlin, J. D. (1976). The physical properties of coronal holes. In Physics of Solar Planetary Environments: Proceedings of the International Symposium on Solar-Terrestrial Physics (pp. 114-128). Boulder, Colorado: American Geophysical Union.222

Bolzan, M. J. A., Ramos, F. M., Sá, L. D. A., Neto, C. R., and Rosa, R. R. (2002). Analysis of fine-scale canopy turbulence within and above an Amazon forest using Tsallis' generalized thermostatistics. J. Geophys. Res., 107(D20), 8063.

Bolzan, M. J. A., and Rosa, R. R. (2012). Multifractal analysis of interplanetary magnetic field obtained during CME events. Ann. Geophys., 30(8), 1107–1112.

Bolzan, M. J. A., and Echer, E. (2014). A multifractal approach applied to the magnetic field turbulence in Jupiter's magnetosheath. Planet. Space Sci., 91, 77–82.

Bolzan, M. J. A. (2018). A modeling substorm dynamics of the magnetosphere using self-organized criticality approach. Physica A:Statist. Mech. Appl., 503, 1182–1188.

Bruno, R., Carbone, V., Bavassano, B., and Sorriso-Valvo, L. (2005). Observations of magnetohydrodynamic turbulence in the 3D heliosphere. Adv. Space Res., 35(5), 939–950.

Bruno, R., and Carbone, V. (2013). The solar wind as a turbulence laboratory. Living Rev. Sol. Phys., 10, 2.

Chasapis, A., Matthaeus, W. H., Parashar, T. N., Lecontel, O., Retinò, A., Breuillard, H., Khotyaintsev, Y., Vaivads, A., Lavraud, B., … Saito, Y. (2017). Electron heating at kinetic scales in magnetosheath turbulence. Astrophys. J., 836(2), 247.

Chhiber, R., Chasapis, A., Bandyopadhyay, R., Parashar, T. N., Matthaeus, W. H., Maruca, B. A., Moore, T. E., Burch, J. L., Torbert, R. B., … Gershman, D. J. (2018). Higher-order turbulence statistics in the Earth’s magnetosheath and the solar wind using Magnetospheric Multiscale observations. J. Geophys. Res. :Space Phys., 123(12), 9941–9954.

Chicarro, A. , Martin, P. , and Trautner, R. (2004). The Mars Express Mission: an overview. In A. Wilson (Ed. ), Mars Express: The Scientific Payload (pp. 3-16). Noordwijk, Netherlands: ESA Publications Division.222

Collinson, G., Wilson, L. B. Iii, Omidi, N., Sibeck, D., Espley, J., Fowler, C. M., Mitchell, D., Grebowsky, J., Mazelle, C., … Jakosky, B. (2018). Solar wind induced waves in the skies of Mars: Ionospheric compression, energization, and escape resulting from the impact of ultralow frequency magnetosonic waves generated upstream of the Martian bow shock. J. Geophys. Res. :Space Phys., 123(9), 7241–7256.

Cranmer, S. R. (2009). Coronal holes. Living Rev. Sol. Phys., 6, 3.

Cravens, T. E. (1997). Physics of Solar System Plasmas (pp. 343-356). Cambridge: Cambridge University Press.222

de Souza Franco, A. M. (2018). A Study of Plasma Waves in the Induced Magnetospheres of Mars and Venus. São José dos Campos, Brazil: National Institute for Space Research.222

de Souza Franco, A. M., Fränz, M., Echer, E., and Bolzan, M. J. A. (2019). Correlation length around Mars: A statistical study with MEX and MAVEN observations. Earth Planet. Phys., 3(6), 560–569.

Dwivedi, N. K., Kumar, S., Kovacs, P., Yordanova, E., Echim, M., Sharma, R. P., Khodachenko, M. L., and Sasunov, Y. (2019). Implication of kinetic Alfvén waves to magnetic field turbulence spectra: Earth’s magnetosheath. Astrophys. Space Sci., 364(6), 101.

Echer, E., Gonzalez, W. D., Guarnieri, F. L., Dal Lago, A., and Vieira, L. E. A. (2005). Introduction to space weather. Adv. Space Res., 35(5), 855–865.

Echer, E., Bolzan, M. J. A. (2016). A comparative study of solar wind and foreshock turbulence near Uranus orbit. Planetary and Space Science, 120, 70–77.

Echer, E., Bolzan, M. J. A., and Franco, A. M. S. (2020). Statistical analysis of solar wind parameter variation with heliospheric distance: Ulysses observations in the ecliptic plane. Adv. Space Res., 65(12), 2846–2856.

Espley, J. R., Cloutier, P. A., Brain, D. A., Crider, D. H., and Acuña, M. H. (2004). Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res., 109(A7), A07213.

Formisano, V. (1984). Solar wind interaction with planetary objects. In Società Astronomica Italiana, Annual Meeting, 27th, Brescia, Italy, Oct. 21-23, 1983. Società Astronomica Italiana, Memorie (ISSN 0037-8720), 55 (3), 511–514.222

Fowler, C. M., Anderson, L., Ergun, R. E., Harada, Y., Hara, T., Collinson, G., Peterson, W. K., Espley, J., Halekas, J., … Jakosky, B. M. (2018). MAVEN observations of solar wind driven magnetosonic waves heating the Martian dayside ionosphere. J. Geophys. Res. :Space Phys., 123(5), 4129–4149.

Franco, A. M. S., Fränz, M., Echer, E., and Bolzan, M. J. A. (2020). Wavelet analysis of low frequency plasma oscillations in the magnetosheath of Mars. Adv. Space Res., 65(9), 2090–2098.

Fränz, M., Dubinin, E., Roussos, E., Woch, J., Winningham, J. D., Frahm, R., Coates, A. J., Fedorov, A., Barabash, S., and Lundin, R. (2006). Plasma moments in the environment of mars. Space Sci. Rev., 126, 165–207.

Frisch, U. (1995). Turbulence: The Legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press.222

Greenstadt, E. W., Le, G., and Strangeway, R. J. (1995). ULF waves in the foreshock. Adv. Space Res., 15(8-9), 71–84.

Habbal, S. R., Woo, R., Fineschi, S., O'Neal, R., Kohl, J., Noci, G., and Korendyke, C. (1997). Origins of the slow and the ubiquitous fast solar wind. Astrophys. J., 489, L103–L106.

Hadid, L. Z., Sahraoui, F., Galtier, S., and Huang, S. Y. (2018). Compressible magnetohydrodynamic turbulence in the Earth's magnetosheath: Estimation of the energy cascade rate using in situ spacecraft data. Phys. Rev. Lett., 120, 055102.

Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., Mcfadden, J. P., Connerney, J. E. P., Espley, J. R., … Jakosky, B. M. (2017). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results. J. Geophys. Res. :Space Phys., 122, 547–578.

Hall, B. E. S., Lester, M., Sánchez-Cano, B., Nichols, J. D., Andrews, D. J., Edberg, N. J. T., Opgenoorth, H. J., Fränz, M., Holmström, M., … Orosei, R. (2016). Annual variations in the Martian bow shock location as observed by the Mars Express mission. J. Geophys. Res. :Space Phys., 121(11), 11474–11494.

Hall, B. E. S., Sánchez-Cano, B., Wild, J. A., Lester, M., and Holmström, M. (2019). The Martian bow shock over solar cycle 23-24 as observed by the Mars Express mission. J. Geophys. Res. :Space Phys., 124(6), 4761–4772.

Han, X., Fraenz, M., Dubinin, E., Wei, Y., Andrews, D. J., Wan, W., He, M., Rong, Z. J., Chai, L., . . Barabash, S. (2014). Discrepancy between ionopause and photoelectron boundary determined from Mars express measurements. Geophys. Res. Lett., 41(23), 8221–8227.

Hundhausen, A. J. (1972). Coronal expansion and solar wind. Physics and Chemistry in Space, 5, 10–13. Berlin, Heidelberg: Springer.222

Kiyani, K., Chapman, S. C., Hnat, B., and Nicol, R. M. (2007). Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence. Phys. Rev. Lett., 98(21), 211101.

Kolmogorov, A. N. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13(1), 82–85.

Kozak, L. V., Pilipenko, V. A., Chugunova, O. M., and Kozak, P. N. (2011). Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath. Cosmic Res., 49(3), 194–204.

Krieger, A. S., Timothy, A. F., and Roelof, E. C. (1973). A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys., 29(2), 505–525.

Lacombe, C., and Belmont, G. (1995). Waves in the Earth's magnetosheath: Observations and interpretations. Adv. Space Res., 15(8-9), 329–340.

Leckband, J. A., Burgess, D., Pantellini, F. G. E., and Schwartz, S. J. (1995). Ion distributions associated with mirror waves in the Earth's magnetosheath. Adv. Space Res., 15(8-9), 345–348.

Luhmann, J. G., Russell, C. T., and Elphic, R. C. (1986). Spatial distributions of magnetic field fluctuations in the dayside magnetosheath. J. Geophys. Res., 91(A2), 1711–1715.

Luhmann, J. G., Russell, C. T., Scarf, F. L., Brace, L. H., and Knudsen, W. C. (1987). Characteristics of the Marslike limit of the Venus-solar wind interaction. J. Geophys. Res. :Space Phys., 92(A8), 8545–8557.

Luhmann, J. G. , Russell, C. T. , Brace, L. H. , and Vaisberg, O. L. (1992). The intrinsic magnetic field and solar wind interaction of Mars. In H. Kieffer, et al. (Eds. ), Mars, 1090–1134. Tucson, Arizona: University of Arizona Press.222

Luhmann, J. G., Ledvina, S. A., and Russell, C. T. (2004). Induced magnetospheres. Adv. Space Res., 33(11), 1905–1912.

Macek, W. M., Wawrzaszek, A., and Kucharuk, B. (2018). Intermittent turbulence in the heliosheath and the magnetosheath plasmas based on Voyager and THEMIS data. Nonlin. Processes Geophys. Discuss., 25, 39–54.

Marsch, E. and Liu, S. (1993). Structure functions and intermittency of velocity fluctuations in the inner solar wind. Ann. Geophys., 11, 227–238.

Matthaeus, W. H., Wan, M. P., Servidio, S., Greco, A., Osman, K. T., Oughton, S., and Dmitruk, P. (2015). Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Phil. Trans. R. Soc. A, 373(2041), 20140154.

Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, E., … Trotignon, J. G. (2004). The plasma environment of Mars. Space Sci. Rev., 111, 33–114.

Opgenoorth, H. J., Andrews, D. J., Fränz, M., Lester, M., Edberg, N. J. T., Morgan, D., Duru, F., Witasse, O., and Williams, A. O. (2013). Mars ionospheric response to solar wind variability. J. Geophys. Res. :Space Phys., 118(10), 6558–6587.

Osmane, A., Dimmock, A. P., and Pulkkinen, T. I. (2015). Universal properties of mirror mode turbulence in the Earth’s magnetosheath. Geophys. Res. Lett., 42(9), 3085–3092.

Ramstad, R., Barabash, S., Futaana, Y., and Holmström, M. (2017). Solar wind and EUV-dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements. J. Geophys. Res. :Space Phys., 122(7), 7279–7290.

Richardson, J. D. (2002). The magnetosheaths of the outer planets. Planet. Space Sci., 50(5-6), 503–517.

Ruhunusiri, S., Halekas, J. S., Espley, J. R., Mazelle, C., Brain, D., Harada, Y., Dibraccio, G. A., Livi, R., Larson, D. E., … Howes, G. G. (2017). Characterization of turbulence in the Mars plasma environment with MAVEN observations. J. Geophys. Res. :Space Phys., 122(1), 656–674.

Russell, C., Chou, E., Luhmann, J., Gazis, P.,Brace, L., Hoegy, Walter. (1988). Solar and interplanetary control of the location of the Venus bow shock. J. Geophys. Res., 93.

Russell, C. T., Luhmann, J. G., Schwingenschuh, K., Riedler, W., and Yeroshenko, Y. (1990). Upstream waves at Mars: Phobos observations. Geophys. Res. Lett., 17(6), 897–900.

Schwartz, S. J., Burgess, D., and Moses, J. J. (1996). Low-frequency waves in the Earth’s magnetosheath: Present status. Ann. Geophys., 14(11), 1134–1150.

Schwenn, R. (2006). Space weather: The solar perspective. Living Rev. Sol. Phys., 3, 2.

Sciffer, M. D., Waters, C. L., and Menk, F. W. (2004). Propagation of ULF waves through the ionosphere: inductive effect for oblique magnetic fields. Ann. Geophys., 22(4), 1155–1169.

Shan, L. C., Ge, Y. S., and Du, A. M. (2020). A case study of large-amplitude ULF waves in the Martian foreshock. Earth Planet. Phys., 4(1), 45–50.

Shan, L. C. , Lu, Q. M. , Mazelle, C. , Huang, C. , Zhang, T. L. , Wu, M. Y. , Gao, X. L. , and Wang, S. (2015). The shape of the Venusian bow shock at solar minimum and maximum: revisit based on VEX observations. Planet. Space Sci. , 109-110, 32–37.222

Sheeley, N. R. Jr., Harvey, J. W., and Feldman, W. C. (1976). Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973-1976. Sol. Phys., 49(2), 271–278.

Tsurutani, B. T., and Rodriguez, P. (1981). Upstream waves and particles: An overview of ISEE results. J. Geophys. Res., 86(A6), 4317–4324.

Warhaft, Z. (2000). Passive scalars in turbulent flows. Annu. Rev. Fluid Mech., 32, 203–240.

Withers, P., Matta, M., Lester, M., Andrews, D., Edberg, N. J. T., Nilsson, H., Opgenoorth, H., Curry, S., Lillis, R., … Witasse, O. (2016). The morphology of the topside ionosphere of Mars under different solar wind conditions: Results of a multi-instrument observing campaign by Mars Express in 2010. Planet. Space Sci., 120, 24–34.


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032


Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019


Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002


LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004


Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021


Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002


Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003


Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034


WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023


ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059


JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055


D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004


ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics. doi: 10.26464/epp2022011


Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037


Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047


XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039


GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations

A. M. S. Franco, E. Echer, M. J. A. Bolzan, M. Fraenz