Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Wang, X.-D., Klecker, B., Nicolaou, G., Barabash, S., Wieser, M., Wurz, P., Galli, A., Cipriani, F., and Futaana, Y. (2022). Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications. Earth Planet. Phys., 6(1), 42–51.

2022, 6(1): 42-51. doi: 10.26464/epp2022003


Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications


Swedish Institute of Space Physics, Kiruna, Sweden


Max-Planck Institute für extraterrestrische Physik, Garching, Germany


Physics Institute, University of Bern, Bern, Switzerland


ESA/ESTEC, Research and Scientific Support Department, Noordwijk, The Netherlands

Corresponding author: Xiao-Dong Wang,

Received Date: 2021-06-22
Web Publishing Date: 2021-12-06

Energetic neutral atoms (ENAs) are produced by the neutralization of energetic ions formed by shock-accelerated gradual solar energetic particle events (SEP). These high-energy ENAs (HENAs) can reach the Earth earlier than the associated SEPs and thus can provide information about the SEPs at the lower corona. The HENA properties observed at Earth depend on the properties of the coronal mass ejection (CME)-driven shocks that accelerate the SEPs. Using a model of HENA production in a shock-accelerated SEP event, we semi-quantitatively investigate the energy-time spectrum of HENAs depending on the width, propagation speed, and direction of the shock, as well as the density and ion abundances of the lower corona. Compared to the baseline model parameters, the cases with a wider shock width angle or a higher coronal density would increase the HENA flux observed at the Earth, while the case with an Earth-propagating shock shows a softened HENA spectrum. The comparison of expected HENA fluxes in different cases with a flight-proven ENA instrument suggests that solar HENAs can feasibly be monitored with current technologies, which could provide a lead time of 2−3 hours for SEPs at a few MeV. We propose that monitoring of solar HENAs could provide a new method to forecast shock-driven SEP events that are capable of significant space weather impacts on the near-Earth environment.

Key words: solar energetic particles, energetic neutral atoms, space weather, numerical simulation

Allen, L. A., Habbal, S. R., and Li, X. (2000). Thermal coupling of protons and neutral hydrogen with anisotropic temperatures in the fast solar wind. J. Geophys. Res. :Space Phys., 105(A10), 23123–23134.

Andersen, L. H., and Bolko, J. (1990). Radiative recombination between fully stripped ions and free electrons. Phys. Rev. A, 42(3), 1184–1191.

Aschwanden, M. J. (2005). Physics of the Solar Corona: an Introduction with Problems and Solutions. Chichester, UK: Praxis Publishing Ltd.222

Barnett, C. F. , Hunter, H. T. , Kirkpatrick, M. I. , Alvarez, I. , Cisneros, C. , and Phaneuf, R. A. (1990). Atomic data for fusion volume 1: collisions of H, H2, He and Li atoms and ions with atoms and molecules. ORNL-6086/V1, Oak Ridge, Tennessee: Oak Ridge National Laboratory.222

D’Amicis, R., Orsini, S., Antonucci, E., Di Lellis, A. M., Hilchenbach, M., Telloni, D., Mura, A., Milillo, A., Fineschi, S., and Bruno, R. (2007). Numerical simulations of coronal hole-associated neutral solar wind as expected at the Solar Orbiter position. J. Geophys. Res. :Space Phys., 112(A6), A06110.

Gruntman, M. (1997). Energetic neutral atom imaging of space plasmas. Rev. Sci. Instrum., 68(10), 3617–3656.

Gruntman, M., Roelof, E. C., Mitchell, D. G., Fahr, H. J., Funsten, H. O., and McComas, D. J. (2001). Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res. :Space Phys., 106(A8), 15767–15781.

Gruntman, M. A. (1994). Neutral solar wind properties: advance warning of major geomagnetic storms. J. Geophys. Res. :Space Phys., 99(A10), 19213–19227.

Hsieh, K. C. , Shih, K. L. , McComas, D. J. , Wu, S. T. , and Wu, C. (1992). Forecasting the arrival of fast coronal-mass ejecta at Earth by the detection of 2-20keV neutral atoms. In Proceedings of SPIE 1744, Instrumentation for Magnetospheric Imagery (pp. 72-78). San Diego: SPIE.222

Kahler, S. W. (2001). The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. :Space Phys., 106(A10), 20947–20955.

Klein, K. L., and Dalla, S. (2017). Acceleration and propagation of solar energetic particles. Space Sci. Rev., 212(3-4), 1107–1136.

Kuang, Y. R. (1992). Electron capture by protons and alpha particles from two-electron targets. J. Phys. B:At. Mol. Opt. Phys., 25(1), 199–211.

Lamy, P. L., Floyd, O., Boclet, B., Wojak, J., Gilardy, H., and Barlyaeva, T. (2019). Coronal mass ejections over solar cycles 23 and 24. Space Sci. Rev. , 215(5), 39.

Lee, M. A. (2005). Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. S., 158(1), 38–67.

Mewaldt, R. A., Leske, R. A., Stone, E. C., Barghouty, A. F., Labrador, A. W., Cohen, C. M. S., Cummings, A. C., Davis, A. J., von Rosenvinge, T. T., and Wiedenbeck, M. E. (2009). STEREO observations of energetic neutral hydrogen atoms during the 2006 December 5 solar flare. Astrophys. J., 693(1), L11–L15.

Mitchell, D. G., Cheng, A. F., Krimigis, S. M., Keath, E. P., Jaskulek, S. E., Mauk, B. H., McEntire, R. W., Roelof, E. C., Williams, D. J., … Drake, V. A. (1993). INCA: the ion neutral camera for energetic neutral atom imaging of the Saturnian magnetosphere. Opt. Eng., 32(12), 3096–3101.

Reames, D. V. (1997). Energetic particles and the structure of coronal mass ejections. In N. Crooker, et al. (Eds. ), Coronal Mass Ejections, Volume 99 (pp. 217-226). Washington, DC: American Geophysical Union.222

von Steiger, R., Schwadron, N. A., Fisk, L. A., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-Schweingruber, R. R., and Zurbuchen, T. H. (2000). Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. J. Geophys. Res. :Space Phys., 105(A12), 27217–27238.

Wang, L. H., Li, G., Shih, A. Y., Lin, R. P., and Wimmer-Schweingruber, R. F. (2014). Simulation of energetic neutral atoms from solar energetic particles. Astrophys. J. Lett., 793(2), L37.

Wurz, P. , and Gabriel, A. (1999). Working group 4: wind acceleration processes. In Proceedings of the 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona (pp. 87). Paris, France: ESA, NASA, C. N. R. S. -I. N. S. U.222


ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028


ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics. doi: 10.26464/epp2022011


XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055


Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005


YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021


Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047


Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048


ChuanPeng Hou, JianSen He, Lei Zhang, Ying Wang, Die Duan, 2021: Dynamics of the charged particles released from a Sun-grazing comet in the solar corona, Earth and Planetary Physics, 5, 232-238. doi: 10.26464/epp2021023


LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


BaoHang Qu, JianYong Lu, Ming Wang, HuanZhi Yuan, Yue Zhou, HanXiao Zhang, 2021: Formation of the bow shock indentation: MHD simulation results, Earth and Planetary Physics, 5, 259-269. doi: 10.26464/epp2021033


SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012


ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011


MingChen Sun, QingLin Zhu, Xiang Dong, JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics, 6, 61-69. doi: 10.26464/epp2022013


ZiQi Ma, Gang Lu, JianFeng Yang, Liang Zhao, 2022: Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton, Earth and Planetary Physics. doi: 10.26464/epp2022016


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications

Xiao-Dong Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, Y. Futaana