Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: X.-D. Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, and Y. Futaana, 2022: Neutralized Solar Energetic Particles for SEP Forecasting: Feasibility Study of an Innovative Technique for Space Weather Applications, Earth and Planetary Physics. http://doi.org/10.26464/epp2022003

doi: 10.26464/epp2022003

Neutralized Solar Energetic Particles for SEP Forecasting: Feasibility Study of an Innovative Technique for Space Weather Applications

1Swedish Institute of Space Physics, Kiruna, Sweden;

2Max-Planck Institute für extraterrestrische Physik, Garching, Germany;

3Physics Institute, University of Bern, Bern, Switzerland;

4ESA/ESTEC, Research and Scientific Support Department, Noordwijk, The Netherlands

Corresponding author: X.-D. Wang, wang@irf.se

Fund Project: A part of this work was conducted under the contract 4000113060/14/NL/MV “Energetic Neutrals for Space Environment Monitoring” with ESA. Some of the contents in this paper were taken from the final report of this ESA contract.

Energetic neutral atoms (ENAs) are produced by the neutralization of energetic ions formed by shock-accelerated gradual solar energetic particle events (SEP). These high-energy ENAs (HENAs) can reach the Earth earlier than the associated SEPs and provide information about the SEPs at the lower corona. The HENA properties observed at Earth depend on the properties of the coronal mass ejection (CME)-driven shocks that accelerate the SEPs. With a model of HENA production in a shock-accelerated SEP event, we semi-quantitatively investigate the energy-time spectrum of HENAs depending on the width, propagation speed, and direction of the shock, as well as the density and ion abundances of the lower corona. Compared to the baseline model parameters, the cases with a wider shock width angle or a higher coronal density would increase the HENA flux observed at the Earth, while the case with an Earth-propagating shock shows a softened HENA spectrum. The comparison of expected HENA fluxes in different cases with a flight-proven ENA instrument suggests that solar HENAs can feasibly be monitored with current technologies, which could provide a lead time of 2-3 hours for SEPs at a few MeV. We propose that monitoring of solar HENAs could provide a new method to forecast shock-driven SEP events that could have significant space weather impacts on the near-Earth environment.

Key words:

Allen, L. A., Habbal, S. R., & Li, X. (2000). Thermal coupling of protons and neutral hydrogen with anisotropic temperatures in the fast solar wind. J. Geophys. Res. Sp. Phys., 105(A10), 23123–23134. Andersen, L. H., and Bolko, J. (1990). Radiative recombination between fully stripped ions and free electrons. Phys. Rev. A, 42(3), 1184-1191. https://doi.org/10.1103/PhysRevA.42.1184 Aschwanden, M. J. (2005). Physics of the Solar Corona: an Introduction with Problems and Solutions (2nd ed). Berlin: Springer. https://doi.org/10.1007/3-540-30766-4 Barnett, C. F., Hunter, H. T., Fitzpatrick, M. I., Alvarez, I., Cisneros, C., and Phaneuf, R. A. (1990). Atomic data for fusion. Volume 1: collisions of H, H2, He and Li atoms and ions with atoms and molecules. 13238. D’Amicis, R., Orsini, S., Antonucci, E., Di Lellis, A. M., Hilchenbach, M., Telloni, D., Mura, A., Milillo, A., Fineschi, S., and Bruno, R. (2007). Numerical simulations of coronal hole-associated neutral solar wind as expected at the Solar Orbiter position. J. Geophys. Res., 112(A6), A06110. https://doi.org/10.1029/2006JA011969 Gruntman, M. (1997). Energetic neutral atom imaging of space plasmas. Rev. Sci. Instrum., 68(10), 3617-3656. https://doi.org/10.1063/1.1148389 Gruntman, M., Roelof, E. C., Mitchell, D. G., Fahr, H. J., Funsten, H. O., and McComas, D. J. (2001). Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res., 106(A8), 15767-15781. https://doi.org/10.1029/2000JA000328 Gruntman, M. A. (1994). Neutral solar wind properties: advance warning of major geomagnetic storms. J. Geophys. Res., 99(A10), 19213-19227. https://doi.org/10.1029/94JA01571 Hsieh, K. C., Shih, K. L., McComas, D. J., Wu, S. T., and Wu, C. (1992). Forecasting the arrival of fast coronal-mass ejecta at Earth by the detection of 2-20keV neutral atoms. In Proceedings of SPIE 1744, Instrumentation for Magnetospheric Imagery (pp. 72-78). San Diego: SPIE. https://doi.org/10.1117/12.60581 Kahler, S. W. (2001). The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. Journal of Geophysical Research: Space Physics, 106(A10), 20947–20955. https://doi.org/10.1029/2000JA002231 Klein, K. L., and Dalla, S. (2017). Acceleration and propagation of solar energetic particles. Space Sci. Rev., 212(3-4), 1107-1136. https://doi.org/10.1007/s11214-017-0382-4 Kuang, Y. R. (1992). Electron capture by protons and alpha particles from two-electron targets. J. Phys. B At. Mol. Opt. Phys., 25(1), 199-211. https://doi.org/10.1088/0953-4075/25/1/023 Lamy, P. L., Floyd, O., Boclet, B., Wojak, J., Gilardy, H., and Barlyaeva, T. (2019). Coronal mass ejections over solar cycles 23 and 24. Space Sci. Rev., 215(5), 39. https://doi.org/10.1007/s11214-019-0605-y Lee, M. a. (2005). Coupled Hydromagnetic Wave Excitation and Ion Acceleration at an Evolving Coronal/Interplanetary Shock. The Astrophysical Journal Supplement Series, 158(1), 38–67. https://doi.org/10.1086/428753 Mewaldt, R. A., Leske, R. A., Stone, E. C., Barghouty, A. F., Labrador, A. W., Cohen, C. M. S., Cummings, A. C., Davis, A. J., von Rosenvinge, T. T., and Wiedenbeck, M. E. (2009). STEREO observations of energetic neutral hydrogen atoms during the 2006 December 5 solar flare. Astrophys. J., 693(1), L11-L15. https://doi.org/10.1088/0004-637X/693/1/L11 Mitchell, D. G., Cheng, A. F., Krimigis, S. M., Keath, E. P., Jaskulek, S. E., Mauk, B. H., Mcentire, R. W., Roelof, E. C., Williams, D. J., Hsieh, K. C., et al (1993). INCA: the ion neutral camera for energetic neutral atom imaging of the Saturnian magnetosphere. Opt. Eng., 32(12), 3096-3101. https://doi.org/10.1117/12.155609 Reames, D. V. (1997). Energetic particles and the structure of coronal mass ejections. In N. Crooker, et al. (Eds.), Coronal Mass Ejections, Volume 99 (pp. 217-226). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM099p0217 von Steiger, R., Schwadron, N. A., Fisk, L. A., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-Schweingruber, R. R., and Zurbuchen, T. H.. (2000). Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. J. Geophys. Res., 105(A12), 27217-27238. https://doi.org/10.1029/1999JA000358 Wang, L. H., Li, G., Shih, A. Y., Lin, R. P., and Wimmer-Schweingruber, R. F. (2014). Simulation of energetic neutral atoms from solar energetic particles. Astrophys. J. Lett., 793(2), L37. https://doi.org/10.1088/2041-8205/793/2/L37 Wurz, P., and Gabriel, A. (1999). Working group 4: wind acceleration processes. In Proceedings of the 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona (pp. 87). France: ESA, NASA, C.N.R.S.-I.N.S.U.

[1]

Franco, A. M.S., Echer, E., Bolzan, M. J. A., and Fraenz, M., 2022: Study of Mars Magnetosheath Fluctuations using the Kurtosis Technique: Mars Express Observations, Earth and Planetary Physics. doi: 10.26464/epp2022006

[2]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[3]

ChuanPeng Hou, JianSen He, Lei Zhang, Ying Wang, Die Duan, 2021: Dynamics of the charged particles released from a Sun-grazing comet in the solar corona, Earth and Planetary Physics, 5, 232-238. doi: 10.26464/epp2021023

[4]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[5]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[6]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[7]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[8]

SiYu Miao, HaiJiang Zhang,YuYang Tan,Ye Lin, 2021: High resolution seismic waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics. doi: 10.26464/epp2021056

[9]

Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005

[10]

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012

[11]

ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011

[12]

YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021

[13]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[14]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[15]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[16]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[17]

Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039

[18]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[19]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[20]

GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Neutralized Solar Energetic Particles for SEP Forecasting: Feasibility Study of an Innovative Technique for Space Weather Applications

X.-D. Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, and Y. Futaana