Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Sun, L. C., Xu, J. Y., Zhu, Y. J., Yuan, W., and Zhao, X. K. (2021). Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China. Earth Planet. Phys., 5(5), 435–449. http://doi.org/10.26464/epp2021048

2021, 5(5): 435-449. doi: 10.26464/epp2021048

SPACE PHYSICS: IONOSPHERIC PHYSICS

Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China

1. 

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. 

University of Chinese Academy of Sciences, Beijing 100049, China

3. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: JiYao Xu, xujy@nssc.ac.cn

Received Date: 2021-03-24
Web Publishing Date: 2021-09-07

Observational evidence is insufficient to understand how equatorial plasma bubbles (EPBs) form over low latitudes. The mechanism of plasma-density enhancement (formation of “plasma blobs”) at low latitudes is in dispute. In this paper, we use data from multiple ground-based instruments (one all-sky airglow imager, five digisondes, and one Fabry–Perot interferometer) to investigate the evolution of an EPB event that occurred at low latitudes over China on the night of 06 December 2015 (06-Dec-2015). We provide observational evidence that an enhanced equatorward wind most likely induced by a substorm could have initiated the Rayleigh–Taylor instability (RTI) that destabilized several EPB depletions in an upwelling region of a large-scale wave-like structure (LSWS) in the bottomside ionosphere. Those EPB depletions were forced to surge poleward, from nearly 10° to 19° magnetic latitude, two hours before midnight. Smaller-scale bifurcations evolved rapidly from tips of airglow depletions by a secondary E × B instability when the aforementioned substorm-induced southwestward wind blew through. During the growth phase of the EPB depletions, a westward polarization electric field inside the LSWS is likely to have compressed plasma downward, inducing the two airglow-type blobs observed in the bottomside ionosphere, by a mechanism of LSWS-blob connection that we propose. We also provide observational evidence of brightness airglow depletions. We find that an enhanced poleward wind associated with a passing-by brightness wave (BW) is likely to have transported plasma to fill the airglow depletions, which finally evolved into brightness airglow structures. This study investigates the physical processes accompanied by the EPB event and those two-airglow blobs observed at low-latitudes over China.

Key words: Equatorial Plasma Bubble, plasma blobs, Rayleigh–Taylor instability, secondary E × B instability, nighttime brightness wave, large-scale wave-like structure, enhanced equatorward (poleward) wind

Abdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., and Trivedi, N. B. (2003). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. J. Geophys. Res.: Space Phys., 108(A12), 1449. https://doi.org/10.1029/2002JA009721

Abdu, M. A. (2012). Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J. Atmos. Sol.-Terr. Phys., 75-76, 44–56. https://doi.org/10.1016/j.jastp.2011.04.024

Adachi, T., Yamaoka, M., Yamamoto, M., Otsuka, Y., Liu, H. X., Hsiao, C. C., Chen, A. B., and Hsu, R. R. (2010). Midnight latitude-altitude distribution of 630 nm airglow in the Asian sector measured with FORMOSAT-2/ISUAL. J. Geophys. Res.: Space Phys., 115(A9), A09315. https://doi.org/10.1029/2009JA015147

Ajith, K. K., Ram, S. T., Yamamoto, M., Otsuka, Y., and Niranjan, K. (2016). On the fresh development of equatorial plasma bubbles around the midnight hours of June solstice. J. Geophys. Res.: Space Phys., 121(9), 9051–9062. https://doi.org/10.1002/2016JA023024

Carter, B. A., Yizengaw, E., Retterer, J. M., Francis, M., Terkildsen, M., Marshall, R., Norman, R., and Zhang, K. (2014a). An analysis of the quiet time day-to-day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region. J. Geophys. Res.: Space Phys., 119(4), 3206–3223. https://doi.org/10.1002/2013JA019570

Carter, B. A., Retterer, J. M., Yizengaw, E., Groves, K., Caton, R., McNamara, L., Bridgwood, C., Francis, M., Terkildsen, M., … Zhang, K. (2014b). Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp. Geophys. Res. Lett., 41(15), 5331–5339. https://doi.org/10.1002/2014GL060953

Chapagain, N. P. (2015). Dynamics Ionospheric Plasma Bubbles Measured by Optical Imaging System. J. Inst. Sci. Technol., 20(1), 20–27. https://doi.org/10.3126/jist.v20i1.13906

Colerico, M., Mendillo, M., Nottingham, D., Baumgardner, J., Meriwether, J., Mirick, J., Reinisch, B. W., Scali, J. L., Fesen, C. G., and Biondi, M. A. (1996). Coordinated measurements of F region dynamics related to the thermospheric midnight temperature maximum. J. Geophys. Res.: Space Phys., 101(A12), 26783–26793. https://doi.org/10.1029/96JA02337

Colerico, M. J., and Mendillo, M. (2002). The current state of investigations regarding the thermospheric midnight temperature maximum (MTM). J. Atmos. Sol.-Terr. Phys., 64(12-14), 1361–1369. https://doi.org/10.1016/S1364-6826(02)00099-8

Dao, T., Otsuka, Y., Shiokawa, K., Ram, S. T., and Yamamoto, M. (2016). Altitude development of postmidnight F region field-aligned irregularities observed using Equatorial Atmosphere Radar in Indonesia. Geophys. Res. Lett., 43(3), 1015–1022. https://doi.org/10.1002/2015GL067432

Dao, T., Otsuka, Y., Shiokawa, K., Nishioka, M., Yamamoto, M., Buhari, S. M., Abdullah, M., and Husin, A. (2017). Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes. J. Geophys. Res.: Space Phys., 122(7), 7504–7518. https://doi.org/10.1002/2017JA024048

Das, T., Paul, K. S., and Paul, A. (2014). Observation of ionospheric irregularities around midnight and post-midnight near the northern crest of the Equatorial Ionization Anomaly in the Indian longitude sector: Case studies. J. Atmos. Sol.-Terr. Phys., 121, 188–195. https://doi.org/10.1016/j.jastp.2014.05.001

Eccles, J. V. (1998a). A simple model of low-latitude electric fields. J. Geophys. Res.: Space Phys., 103(A11), 26699–26708. https://doi.org/10.1029/98JA02657

Eccles, J. V. (1998b). Modeling investigation of the evening prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res.: Space Phys., 103(A11), 26709–26719. https://doi.org/10.1029/98JA02656

Fejer, B. G., de Paula, E. R., González, S. A., and Woodman, R. F. (1991). Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res.: Space Phys., 96(A8), 13901–13906. https://doi.org/10.1029/91JA01171

Fejer, B. G., Scherliess, L., and de Paula, E. R. (1999). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res.: Space Phys., 104(A9), 19859–19869. https://doi.org/10.1029/1999JA900271

Garcia, F. J., Taylor, M. J., and Kelley, M. C. (1997). Two-dimensional spectral analysis of mesospheric airglow image data. Appl. Opt., 36(29), 7374–7385. https://doi.org/10.1364/AO.36.007374

Haerendel, G., and Eccles, J. V. (1992). The role of the equatorial electrojet in the evening ionosphere. J. Geophys. Res.: Space Phys., 97(A2), 1181–1192. https://doi.org/10.1029/91JA02227

Hedin, A. E., Spencer, N. W., and Killeen, T. L. (1988). Empirical global model of upper thermosphere winds based on Atmosphere and Dynamics Explorer satellite data. J. Geophys. Res.: Space Phys., 93(A9), 9959–9978. https://doi.org/10.1029/JA093iA09p09959

Herrero, F. A., Spencer, N. W., and Mayr, H. G. (1993). Thermosphere and F-region plasma dynamics in the equatorial region. Adv. Space Res., 13(1), 201–220. https://doi.org/10.1016/0273-1177(93)90019-8

Huang, C. S., Le, G., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Pfaff, R. F., and Hairston, M. R. (2014). Relationship between plasma bubbles and density enhancements: Observations and interpretation. J. Geophys. Res.: Space Phys., 119(2), 1325–1336. https://doi.org/10.1002/2013JA019579

Huba, J. D., and Krall, J. (2013). Impact of meridional winds on equatorial spread F: Revisited. Geophys. Res. Lett., 40(7), 1268–1272. https://doi.org/10.1002/grl.50292

Jiang, G. Y., Xu, J. Y., Wang, W. B., Yuan, W., Zhang, S. R., Yu, T., Zhang, X. X., Huang, C., Kerr, R. B., … Li, Q. Z. (2018). A comparison of quiet time thermospheric winds between FPI observations and model calculations. J. Geophys. Res.: Space Phys., 123(9), 7789–7805. https://doi.org/10.1029/2018JA025424

Kelley, M. C. (1989). The Earth's ionosphere [electronic resource]: plasma physics and electrodynamics/Michael C. Kelley, with contributions from Rodney A. Heelis. https://library.isical.ac.in/cgi-bin/koha/opac-detail.pl?biblionumber=387710222

Kelley, M. C., Makela, J. J., Ledvina, B. M., and Kintner, P. M. (2002). Observations of equatorial spread-F from Haleakala, Hawaii. Geophys. Res. Lett., 29(20), 2003. https://doi.org/10.1029/2002GL015509

Kelley, M. C., Makela, J. J., Chau, J. L., and Nicolls, M. J. (2003). Penetration of the solar wind electric field into the magnetosphere/ionosphere system. Geophys. Res. Lett., 30(4), 1158. https://doi.org/10.1029/2002GL016321

Kil, H., Choi, H. S., Heelis, R. A., Paxton, L. J., Coley, W. R., and Miller, E. S. (2011). Onset conditions of bubbles and blobs: A case study on 2 March 2009. Gephys. Res. Lett., 38(6), L06101. https://doi.org/10.1029/2011GL046885

Kil, H., Kwak, Y. S., Lee, W. K., Miller, E. S., Oh, S. J., and Choi, H. S. (2015). The causal relationship between plasma bubbles and blobs in the low-latitude F region during a solar minimum. J. Geophys. Res.: Space Phys., 120(5), 3961–3969. https://doi.org/10.1002/2014JA020847

Kil, H., and Paxton, L. J. (2017). Global distribution of nighttime medium-scale traveling ionospheric disturbances seen by Swarm satellites. Gephys. Res. Lett., 44(18), 9176–9182. https://doi.org/10.1002/2017GL074750

Kil, H., Paxton, L. J., Jee, G., and Nikoukar, R. (2019). Plasma blobs associated with medium-scale traveling ionospheric disturbances. Geophys. Res. Lett., 46(7), 3575–3581. https://doi.org/10.1029/2019GL082026

Krall, J., Huba, J. D., Joyce, G., and Zalesak, S. T. (2009). Three-dimensional simulation of equatorial spread-F with meridional wind effects. Ann. Geophys., 27(5), 1821–1830. https://doi.org/10.5194/angeo-27-1821-2009

Krall, J., Huba, J. D., Ossakow, S. L., and Joyce, G. (2010). Why do equatorial ionospheric bubbles stop rising?. Geophys. Res. Lett., 37(9), L09105. https://doi.org/10.1029/2010GL043128

Le, G., Huang, C. S., Pfaff, R. F., Su, S. Y., Yeh, H. C., Heelis, R. A., Rich, F. J., and Hairston, M. (2003). Plasma density enhancements associated with equatorial spread F: ROCSAT-1 and DMSP observations. J. Geophys. Res.: Space Phys., 108(A8), 1318. https://doi.org/10.1029/2002JA009592

Makela, J. J., Kelley, M. C., and Nicolls, M. J. (2006). Optical observations of the development of secondary instabilities on the eastern wall of an equatorial plasma bubble. J. Geophys. Res.: Space Phys., 111(A9), A09311. https://doi.org/10.1029/2006JA011646

Makela, J. J., and Miller, E. S. (2008). Optical observations of the growth and day-to-day variability of equatorial plasma bubbles. J. Geophys. Res.: Space Phys., 113(A3), A03307. https://doi.org/10.1029/2007JA012661

Manoj, C., and Maus, S. (2012). A real-time forecast service for the ionospheric equatorial zonal electric field. Space Weather, 10(9), S09002. https://doi.org/10.1029/2012SW000825

Martinis, C., Eccles, J. V., Baumgardner, J., Manzano, J., and Mendillo, M. (2003). Latitude dependence of zonal plasma drifts obtained from dual-site airglow observations. J. Geophys. Res.: Space Phys., 108(A3), 1129. https://doi.org/10.1029/2002JA009462

Martinis, C., Baumgardner, J., Mendillo, M., Su, S. Y., and Aponte, N. (2009). Brightening of 630.0 nm equatorial spread-F airglow depletions. J. Geophys. Res., 114(A6), A06318. https://doi.org/10.1029/2008JA013931

Maruyama, T. (1988). A diagnostic model for equatorial spread F, 1, Model description and application to electric field and neutral wind effects. J. Geophys. Res.: Space Phys., 93(A12), 14611–14622. https://doi.org/10.1029/JA093iA12p14611

Miller, E. S., Makela, J. J., and Kelley, M. C. (2009). Seeding of equatorial plasma depletions by polarization electric fields from middle latitudes: Experimental evidence. Geophys. Res. Lett., 36(18), L18105. https://doi.org/10.1029/2009GL039695

Miller, E. S., Kil, H., Makela, J. J., Heelis, R. A., Talaat, E. R., and Gross, A. (2014). Topside signature of medium-scale traveling ionospheric disturbances. Ann. Geophys., 32(8), 959–965. https://doi.org/10.5194/angeo-32-959-2014

Narayanan, V. L., Taori, A., Patra, A. K., Emperumal, K., and Gurubaran, S. (2012). On the importance of wave-like structures in the occurrence of equatorial plasma bubbles: A case study. J. Geophys. Res.: Space Phys., 117(A1), A01306. https://doi.org/10.1029/2011JA017054

Narayanan, V. L., Gurubaran, S., Emperumal, K., and Patil, P. T. (2013). A study on the night time equatorward movement of ionization anomaly using thermospheric airglow imaging technique. J. Atmos. Sol.-Terr. Phys., 103, 113–120. https://doi.org/10.1016/j.jastp.2013.03.028

Narayanan, V. L., Shiokawa, K., Otsuka, Y., and Saito, S. (2014). Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low-latitude limit. J. Geophys. Res.: Space Phys., 119(11), 9268–9282. https://doi.org/10.1002/2014JA020368

Nishioka, M., Otsuka, Y., Shiokawa, K., Tsugawa, T., Effendy, Supnithi, P., Nagatsuma, T., and Murata, K. T. (2012). On post-midnight field-aligned irregularities observed with a 30.8-MHz radar at a low latitude: Comparison with F-layer altitude near the geomagnetic equator. J. Geophys. Res.: Space Phys., 117(A8), A08337. https://doi.org/10.1029/2012JA017692

Park, C. G. (1971). Westward electric fields as the cause of nighttime enhancements in electron concentrations in midlatitude F region. J. Geophys. Res., 76(19), 4560–4568. https://doi.org/10.1029/JA076i019p04560

Park, J., Min, K. W., Lee, J. J., Kil, H., Kim, V. P., Kim, H. J., Lee, E., and Lee, D. Y. (2003). Plasma blob events observed by KOMPSAT-1 and DMSP F15 in the low latitude nighttime upper ionosphere. Geophys. Res. Lett., 30(21), 2114. https://doi.org/10.1029/2003GL018249

Park, J., Martinis, C. R., Lühr, H., Pfaff, R. F., and Kwak, Y. S. (2016). Hemispheric asymmetry in transition from equatorial plasma bubble to blob as deduced from 630.0 nm airglow observations at low latitudes. J. Geophys. Res.: Space Phys., 121(1), 881–893. https://doi.org/10.1002/2015JA022175

Pimenta, A. A., Sahai, Y., Bittencourt, J. A., Abdu, M. A., Takahashi, H., and Taylor, M. J. (2004). Plasma blobs observed by ground-based optical and radio techniques in the Brazilian tropical sector. Geophys. Res. Lett., 31(12), L12810. https://doi.org/10.1029/2004GL020233

Pimenta, A. A., Sahai, Y., Bittencourt, J. A., and Rich, F. J. (2007). Ionospheric plasma blobs observed by OI 630 nm all-sky imaging in the Brazilian tropical sector during the major geomagnetic storm of April 6-7, 2000. Geophys. Res. Lett., 34(2), L02820. https://doi.org/10.1029/2006GL028529

Rajesh, P. K., Chen, C. H., Lin, C. H., Liu, J. Y., Huba, J. D., Chen, A. B., Hsu, R. R., and Chen, Y. T. (2014). Low-latitude midnight brightness in 630.0 nm limb observations by FORMOSAT-2/ISUAL. J. Geophys. Res.: Space Phys., 119(6), 4894–4904. https://doi.org/10.1002/2014JA019927

Reinisch, B. W., Galkin, I. A., Khmyrov, G. M., Kozlov, A. V., Bibl, K., Lisysyan, I. A., Cheney, G. P., Huang, X., Kitrosser, D. F., … Grochmal, H. J. (2009). New Digisonde for research and monitoring applications. Radio Sci., 44(1), RS0A24. https://doi.org/10.1029/2008RS004115

Roble, R. G., Dickinson, R. E., and Ridley, E. C. (1982). Global circulation and temperature structure of thermosphere with high-latitude plasma convection. J. Geophys. Res.: Space Phys., 87(A3), 1599–1614. https://doi.org/10.1029/JA087iA03p01599

Sekar, R., Chakrabarty, D., Narayanan, R., Sripathi, S., Patra, A. K., and Subbarao, K. S. V. (2004). Characterization of VHF radar observations associated with equatorial Spread F by narrow-band optical measurements. Ann. Geophys., 22(9), 3129–3136. https://doi.org/10.5194/angeo-22-3129-2004

Sekar, R., Chakrabarty, D., Sarkhel, S., Patra, A. K., Devasia, C. V., and Kelley, M. C. (2007). Identification of active fossil bubbles based on coordinated VHF radar and airglow measurements. Ann. Geophys., 25(10), 2099–2102. https://doi.org/10.5194/angeo-25-2099-2007

Sekar, R., Chakrabarty, D., Narayanan, R., and Patra, A. K. (2008). Equatorial Spread F structures and associated airglow intensity variations observed over Gadanki. Ann. Geophys., 26(12), 3863–3873. https://doi.org/10.5194/angeo-26-3863-2008

Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res.: Space Phys., 101(A12), 26875–26891. https://doi.org/10.1029/96JA00682

Sun, L. C., Xu, J. Y., Wang, W. B., Yue, X. N., Yuan, W., Ning, B. Q., Zhang, D. H., and de Meneses, F. C. (2015). Mesoscale field-aligned irregularity structures (FAIs) of airglow associated with medium-scale traveling ionospheric disturbances (MSTIDs). J. Geophys. Res.: Space Phys., 120(11), 9839–9858. https://doi.org/10.1002/2014JA020944

Sun, L. C., Xu, J. Y., Wang, W. B., Yuan, W., Li, Q. Z., and Jiang, C. W. (2016). A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China. J. Geophys. Res.: Space Phys., 121(11), 11495–11517. https://doi.org/10.1002/2016JA022950

Sun, L. C., Xu, J. Y., Wang, W. B., Yuan, W., and Zhu, Y. J. (2017). Evolution processes of a group of equatorial plasma bubble (EPBs) simultaneously observed by ground-based and satellite measurements in the equatorial region of China. J. Geophys. Res.: Space Phys., 122(4), 4819–4836. https://doi.org/10.1002/2016JA023223

Sun, L. C., Xu, J. Y., Xiong, C., Zhu, Y. J., Yuan, W., Hu, L. H., Liu, W. J., and Chen, G. (2019). Midlatitudinal special airglow structures generated by the interaction between propagating medium-scale traveling ionospheric disturbance and nighttime plasma density enhancement at magnetically quiet time. Geophys. Res. Lett., 46(3), 1158–1167. https://doi.org/10.1029/2018GL080926

Thampi, S. V., Yamamoto, M., Tsunoda, R. T., Otsuka, Y., Tsugawa, T., Uemoto, J., and Ishii, M. (2009). First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite. Geophys. Res. Lett., 36(18), L18111. https://doi.org/10.1029/2009GL039887

Tsunoda, R. T., and White, B. R. (1981). On the generation and growth of equatorial backscatter plumes 1. Wave structure in the bottomside F layer. J. Geophys. Res.: Space Phys., 86(A5), 3610–3616. https://doi.org/10.1029/JA086iA05p03610

Tsunoda, R. T., Livingston, R. C., McClure, J. P., and Hanson, W. B. (1982). Equatorial plasma bubbles: Vertically elongated wedges from the bottomside F layer. J. Geophys. Res: Space Phys., 87(A11), 9171–9180. https://doi.org/10.1029/JA087iA11p09171

Tsunoda, R. T. (2005). On the enigma of day-to-day variability in equatorial spread F. Geophys. Res. Lett., 32(8), L08103. https://doi.org/10.1029/2005GL022512

Tsunoda, R. T. (2006). Day-to-day variability in equatorial spread F: is there some physics missing?. Geophys. Res. Lett., 33(16), L16106. https://doi.org/10.1029/2006GL025956

Tsunoda, R. T., Bubenik, D. M., Thampi, S. V., and Yamamoto, M. (2010). On large-scale wave structure and equatorial spread F without a post-sunset rise of the F layer. Geophys. Res. Lett., 37(7), L07105. https://doi.org/10.1029/2009GL042357

Wang, C. (2010). New chains of space weather monitoring stations in China. Space Wea., 8(8), S08001. https://doi.org/10.1029/2010SW000603

Weber, E. J., Brinton, H. C., Buchau, J., and Moore, J. G. (1982). Coordinated airborne and satellite measurements of equatorial plasma depletions. J. Geophys. Res.: Space Phys., 87(A12), 10503–10513. https://doi.org/10.1029/JA087iA12p10503

Wu, K., Xu, J. Y., Wang, W. B., Sun, L. C., Liu, X., and Yuan, W. (2017). Interesting equatorial plasma bubbles observed by all-sky imagers in the equatorial region of China. J. Geophys. Res.: Space Phys., 122(10), 10596–10611. https://doi.org/10.1002/2017JA024561

Wu, Q., Gablehouse, R. D., Solomon, S. C., Killeen, T. L., and She, C. Y. (2004). A new Fabry-Perot interferometer for upper atmosphere research. In Proceedings of SPIE 5660, Instruments, Science, and Methods for Geospace and Planetary Remote Sensing (pp. 218-227). Honolulu, Hawai'i, United States: SPIE. https: //doi.org/10.1117/12.573084222

Yokoyama, T., Su, S. Y., and Fukao, S. (2007). Plasma blobs and irregularities concurrently observed by ROCSAT-1 and Equatorial Atmosphere Radar. J. Geophys. Res.: Space Phys., 112(A5), A05311. https://doi.org/10.1029/2006JA012044

Yokoyama, T., Yamamoto, M., Otsuka, Y., Nishioka, M., Tsugawa, T., Watanabe, S., and Pfaff, R. F. (2011). On postmidnight low-latitude ionospheric irregularities during solar minimum: 1. Equatorial Atmosphere Radar and GPS-TEC observations in Indonesia. J. Geophys. Res.: Space Phys., 116(A11), A11325. https://doi.org/10.1029/2011JA016797

Yokoyama, T., Jin, H., and Shinagawa, H. (2015). West wall structuring of equatorial plasma bubbles simulated by three-dimensional HIRB model. J. Geophys. Res.: Space Phys., 120(10), 8810–8816. https://doi.org/10.1002/2015JA021799

Yuan, W., Liu, X., Xu, J., Zhou, Q., Jiang, G., and Ma, R. (2013). FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07. Ann. Geophys., 31(8), 1365–1378. https://doi.org/10.5194/angeo-31-1365-2013

Zalesak, S. T., Ossakow, S. L., and Chaturvedi, P. K. (1982). Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity. J. Geophys. Res., 87(A1), 151–166. https://doi.org/10.1029/JA087iA01p00151

[1]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[2]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[3]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

[4]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[5]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[6]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[7]

K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039

[8]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[9]

Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006

[10]

ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037

[11]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004

[12]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[13]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[14]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[15]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[16]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[17]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[18]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[19]

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049

[20]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China

LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao