Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Hou, C. P., He, J. S., Zhang, L., Wang, Y. and Duan, D. (2021). Dynamics of the charged particles released from a Sun-grazing comet in the solar corona. Earth Planet. Phys., 5(3), 1–7doi: 10.26464/epp2021023

doi: 10.26464/epp2021023

SPACE PHYSICS: INTERPLANETARY PHYSICS

Dynamics of the charged particles released from a Sun-grazing comet in the solar corona

1. 

School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. 

Qian Xuesen Laboratory of Space Technology, Beijing 100094, China

3. 

SIGMA Space Weather Group, National Space Sciences Center, Chinese Academy of Sciences, Beijing 100190, China

Corresponding author: JianSen He, jshept@pku.edu.cn

Received Date: 2020-11-26
Web Publishing Date: 2021-05-01

The sun-grazing comet C/2011 W3 (Lovejoy) showed a distorted, unconventional tail morphology near its perihelion (1.2Rs). Based on the “Solar Corona and Inner Heliosphere” modeling result of the magnetic field and plasma dynamics in the solar corona, we use the Runge-Kutta method to simulate the moving trajectory of charged dust and ion particles released at different positions from the C/2011 W3 orbit. We find that the dust particles near the sun, which are subject to a strong magnetic Lorentz force, travel differently from their counterparts distant from the sun, where the latter are mainly affected by the solar gravitational force and radiation pressure. According to the simulation results, we propose that the magnetic mirror effect can rebound the charged dust particles back away from the sun and be regarded as one crucial cause of the dust-free zone formation. We find that ions mainly move along magnetic field lines at an acute angle to the comet's direction of motion. The cometary ions' movement direction was determined by the comet's velocity and the coronal magnetic field, which are responsible for the C/2011 W3’s unique comet tail shape near perihelion. Additionally, the ion particles also experience perpendicular drift motion, mainly dominated by the electric field drift, which is similar to and can be used to approximate the solar wind's transverse velocity at its source region.

Key words: Sun-grazing comet, cometary tail, solar corona, solar wind, dust-free zone

Battams, K., and Knight, M. M. (2017). SOHO comets: 20 years and 3000 objects later. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 375(2097), 20160257. https://doi.org/10.1098/rsta.2016.0257

Battams, K., Knight, M. M., Kelley, M. S. P., Gallagher, B. M., Howard, R. A., and Stenborg, G. (2020). Parker solar probe observations of a dust trail in the orbit of (3200) Phaethon. Astrophys. J. Suppl. Ser., 246(2), 64. https://doi.org/10.3847/1538-4365/ab6c68

Bemporad, A., Poletto, G., Raymond, J. C., Biesecker, D. A., Marsden, B., Lamy, P., Ko, Y. K., and Uzzo, M. (2005). UVCS observation of Sungrazer C/2001 C2: possible comet fragmentation and plasma-dust interactions. Astrophys. J., 620(1), 523–536. https://doi.org/10.1086/427063

Biesecker, D. A., Lamy, P., Cyr, O. C. S., Llebaria, A., and Howard, R. A. (2002). Sungrazing comets discovered with the SOHO/LASCO coronagraphs 1996–1998. Icarus, 157(2), 323–348. https://doi.org/10.1006/icar.2002.6827

Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Moses, J. D., Socker, D. G., Dere, K. P., Lamy, P. L., ... Eyles, C. J. (1995). The large angle spectroscopic coronagraph (LASCO). In B. Fleck, et al. (Eds.), The SOHO Mission (pp. 357–402). Dordrecht: Springer. https://doi.org/10.1007/978-94-009-0191-9_10222

Ciaravella, A., Raymond, J. C., and Giordano, S. (2010). Ultraviolet spectra of the C-2003k7 comet: evidence for dust sublimation in Si and C lines. Astrophys. J., 713(1), L69–L73. https://doi.org/10.1088/2041-8205/713/1/L69

Czechowski, A., and Mann, I. (2010). Formation and acceleration of Nano dust in the inner heliosphere. Astrophys. J., 714(1), 89–99. https://doi.org/10.1088/0004-637x/714/1/89

Dohnanyi, J. S. (1978). Particle dynamics. Cosmic Dust, 527–605. https://ui.adsabs.harvard.edu/abs/1978codu.book..527D222

Downs, C., Linker, J. A., Mikić, Z., Riley, P., Schrijver, C. J., and Saint-Hilaire, P. (2013). Probing the solar magnetic field with a Sun-grazing comet. Science, 340(6137), 1196–1199. https://doi.org/10.1126/science.1236550

Giordano, S., Raymond, J. C., Lamy, P., Uzzo, M., and Dobrzycka, D. (2015). Probing the solar wind acceleration region with the Sun-grazing comet C/2002 S2. Astrophys. J., 798(1), 47. https://doi.org/10.1088/0004-637x/798/1/47

Gordovskyy, M., Browning, P. K., and Vekstein, G. E. (2010). Particle acceleration in a transient magnetic reconnection event. Astron. Astrophys., 519, A21. https://doi.org/10.1051/0004-6361/200913569

Howard, R. A., Vourlidas, A., Bothmer, V., Colaninno, R. C., DeForest, C. E., Gallagher, B., Hall, J. R., Hess, P., Higginson, A. K., .. Viall, N. M. (2019). Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature, 576(7786), 232–236. https://doi.org/10.1038/s41586-019-1807-x

Huang, T. S., Hill, T. W., and Wolf, R. A. (1988). Motion of charged particles in planetary magnetospheres with nonelectromagnetic forces. J. Geophys. Res.: Space Phys., 93(A6), 5513–5523. https://doi.org/10.1029/JA093iA06p05513

Ip, W. H., and Yan, T. H. (2012). Injection and acceleration of charged Nano-dust particles from sungrazing comets. AIP Conf. Proc., 1436(1), 30–35. https://doi.org/10.1063/1.4723586

Jessberger, E. K., Stephan, T., Rost, D., Arndt, P., Maetz, M., Stadermann, F. J., Brownlee, D. E., Bradley, J. P., and Kurat, G. (2001). Properties of interplanetary dust: information from collected samples. In E. Grün, et al. (Eds.), Interplanetary Dust (pp. 253-294). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-56428-4_6222

Jewitt, D. (2012). The active asteroids. Astron. J., 143(3), 66. https://doi.org/10.1088/0004-6256/143/3/66

Jewitt, D., Li, J., and Agarwal, J. (2013). The dust tail of asteroid (3200) Phaethon. Astrophys. J., 771(2), L36. https://doi.org/10.1088/2041-8205/771/2/L36

Jia, Y. D., Russell, C. T., Liu, W., and Shou, Y. S. (2014). Multi-fluid model of a Sun-grazing comet in the rapidly ionizing, magnetized low corona. Astrophys. J., 796(1), 42. https://doi.org/10.1088/0004-637X/796/1/42

Jones, G. H., Knight, M. M., Battams, K., Boice, D. C., Brown, J., Giordano, S., Raymond, J., Snodgrass, C., Steckloff, J. K., .. McCauley, P. (2018). The science of sungrazers, sunskirters, and other near-sun comets. Space Sci. Rev., 214(1), 20. https://doi.org/10.1007/s11214-017-0446-5

Lai, H. R., Russell, C. T., Jia, Y. D., Wei, H. Y., and Angelopoulos, V. (2015). Momentum transfer from solar wind to interplanetary field enhancements inferred from magnetic field draping signatures. Geophys. Res. Lett., 42(6), 1640–1645. https://doi.org/10.1002/2015GL063302

Li, J., and Jewitt, D. (2013). Recurrent perihelion activity in (3200) Phaethon. Astron. J., 145(6), 154. https://doi.org/10.1088/0004-6256/145/6/154

Mann, I., Kimura, H., Biesecker, D. A., Tsurutani, B. T., Grün, E., McKibben, R. B., Liou, J. C., MacQueen, R. M., Mukai, T., .. Lamy, P. (2004). Dust near the Sun. Space Scie. Rev., 110(3-4), 269–305. https://doi.org/10.1023/B:SPAC.0000023440.82735.ba

McCauley, P. I., Saar, S. H., Raymond, J. C., Ko, Y. K., and Saint-Hilaire, P. (2013). Extreme-ultraviolet and X-Ray observations of comet Lovejoy (C/2011 W3) in the lower corona. Astrophys. J., 768(2), 161. https://doi.org/10.1088/0004-637X/768/2/161

Meyer-Vernet, N., Maksimovic, M., Czechowski, A., Mann, I., Zouganelis, I., Goetz, K., Kaiser, M. L., St. Cyr, O. C., Bougeret, J. L., and Bale, S. D. (2009). Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?. Sol. Phys., 256(1-2), 463–474. https://doi.org/10.1007/s11207-009-9349-2

Mukai, T. (1981). On the charge distribution of interplanetary grains. Astron. Astrophys., 99, 1–6.

Page, B., Bale, S. D., Bonnell, J. W., Goetz, K., Goodrich, K., Harvey, P. R., Larsen, R., MacDowall, R. J., Malaspina, D. M., .. Szalay, J. R. (2020). Examining dust directionality with the parker solar probe FIELDS instrument. Astrophys. J. Suppl. Ser., 246(2), 51. https://doi.org/10.3847/1538-4365/ab5f6a

Raymond, J. C., McCauley, P. I., Cranmer, S. R., and Downs, C. (2014). The solar corona as probed by comet Lovejoy (C/2011 W3). Astrophys. J., 788(2), 152. https://doi.org/10.1088/0004-637x/788/2/152

Raymond, J. C., Downs, C., Knight, M. M., Battams, K., Giordano, S., and Rosati, R. (2018). Comet C/2011 W3 (Lovejoy) between 2 and 10 solar radii: physical parameters of the comet and the corona. Astrophys. J., 858(1), 19. https://doi.org/10.3847/1538-4357/aabade

Russell, H. N. (1929). On meteoric matter near the stars. Astrophys. J., 69, 49. https://doi.org/10.1086/143158

Sekanina, Z., and Chodas, P. W. (2007). Fragmentation hierarchy of bright sungrazing comets and the birth and orbital evolution of the Kreutz system. II. The case for cascading fragmentation. Astrophys. J., 663(1), 657–676. https://doi.org/10.1086/517490

Sekanina, Z., and Chodas, P. W. (2012). Comet C/2011 W3 (Lovejoy): orbit determination, outbursts, disintegration of nucleus, dust-tail morphology, and relationship to new cluster of bright sungrazers. Astrophys. J., 757(2), 127. https://doi.org/10.1088/0004-637x/757/2/127

Szalay, J. R., Pokorný, P., Bale, S. D., Christian, E. R., Goetz, K., Goodrich, K., Hill, M. E., Kuchner, M., Larsen, R., .. Schwadron, N. (2020). The near-sun dust environment: initial observations from parker solar probe. Astrophys. J. Suppl. Ser., 246(2), 27. https://doi.org/10.3847/1538-4365/ab50c1

Yang, L. P., Wang, L. H., He, J. S., Tu, C. Y., Zhang, S. H., Zhang, L., and Feng, X. S. (2014). Numerical simulation of superhalo electrons generated by magnetic reconnection in the solar wind source region. Res. Astron. Astrophys., 15(3), 348–362. https://doi.org/10.1088/1674-4527/15/3/005

[1]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[2]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[3]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics. doi: 10.26464/epp2021024

[4]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[5]

Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics. doi: 10.26464/epp2021029

[6]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[7]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[8]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[9]

Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032

[10]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

[11]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

[12]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[13]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[14]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[15]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[16]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[17]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004

[18]

Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005

[19]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[20]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Dynamics of the charged particles released from a Sun-grazing comet in the solar corona

ChuanPeng Hou, JianSen He, Lei Zhang, Ying Wang, Die Duan