Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ye, Y. G., Zou, H., Zong, Q.-G., Chen, H. F., Zou, J. Q., Shi, W. H., Yu, X. Q., Zhong, W. Y., Wang, Y. F., Hao, Y. X., Liu, Z. Y., Jia, X. H., Wang, B., Yang, X. P. and Hao, X. Y. (2021). Energetic electron detection packages on board Chinese navigation satellites in MEO. Earth Planet. Phys., 5(2), 158–179doi: 10.26464/epp2021021

2021, 5(2): 158-179. doi: 10.26464/epp2021021

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Energetic electron detection packages on board Chinese navigation satellites in MEO

1. 

School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. 

State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing 100093, China

3. 

Shandong Aerospace Electro-technology, Yantai Shandong 264000, China

Corresponding author: Hong Zou, hongzou@pku.edu.cn

Received Date: 2020-11-24
Web Publishing Date: 2021-03-01

Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E telescope technology, and a deep dielectric charging monitor (DDCM). The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30° field of view (FOV). The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30° cone-angle FOV. The ground test and calibration results indicate that these three sensors exhibit excellent performance. Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electron-ion spectrometer (MagEIS) of the Van Allen Probes spacecraft, with an average relative deviation of 27.3% for the energy spectra. The charging currents and voltages measured by the DDCM during storms are consistent with the high-energy electron observations of the HED, demonstrating the effectiveness of the DDCM. The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather.

Key words: radiation belts, energetic electron detection, Pin-hole technology, Chinese navigation satellites, MEO, internal charging

Baker, D. N., Kanekal, S. G., Li, X., Monk, S. P., Goldstein, J., and Burch, J. L. (2004). An extreme distortion of the Van Allen belt arising from the 'Hallowe'en' solar storm in 2003. Nature, 432(7019), 878–881. https://doi.org/10.1038/nature03116

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Batiste, S., Bolton, M., Li, X., Elkington, S. R., Monk, S., Reukauf, R., … Friedel, R. (2013a). The Relativistic Electron-Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: characterization of Earth’s radiation belt high-energy particle Populations. Space Sci. Rev., 179(1-4), 337–381. https://doi.org/10.1007/s11214-012-9950

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., Elkington, S. R., Friedel, R. H. W., Goldstein, J., … Claudepierre, S. G. (2013b). A long-lived relativistic electron storage ring embedded in earth’s outer Van Allen belt. Science, 340(6129), 186–190. https://doi.org/10.1126/science.1233518

Baker, D. N., Erickson, P. J., Fennell, J. F., Foster, J. C., Jaynes, A. N., and Verronen, P. T. (2018). Space weather effects in the Earth’s radiation belts. Space Sci. Rev., 214, 17. https://doi.org/10.1007/s11214-017-0452-7

Baker, D. N., Hoxie, V., Zhao, H., Jaynes, A. N., Kanekal, S., Li, X. L., and Elkington, S. (2019). Multiyear measurements of radiation belt electrons: acceleration, transport, and loss. J. Geophys. Res. Space Phys., 124(4), 2588–2602. https://doi.org/10.1029/2018JA026259

Blake, J. B., Kolasinski, W. A., Fillius, R. W., and Mullen, E. G. (1992). Injection of electrons and protons with energies of tens of MeV into L < 3 on 24 March 1991. Geophys. Res. Lett., 19(8), 821–824. https://doi.org/10.1029/92GL00624

Blake, J. B., Fennell, J. F., Friesen, L. M., Johnson, B. M., Kolasinski, W. A., Mabry, D. J., Osborn, J. V., Penzin, S. H., Schnauss, E. R., … Hall, D. (1995). CEPPAD: comprehensive energetic particle and pitch angle distribution experiment on POLAR. Space Sci. Rev., 71(1-4), 531–562. https://doi.org/10.1007/BF00751340

Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R. Jr., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., … Zakrzewski, M. P. (2013). The Magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. Space Sci. Rev., 179(1-4), 383–421. https://doi.org/10.1007/s11214-013-9991-8

Bortnik, J., Chu, X. N., Ma, Q. L., Li, W., Zhang, X. J., Thorne, R. M., Angelopoulos, V., Denton, R. E., Kletzing, C. A., ... Baker, D. N. (2018). Artificial neural networks for determining magnetospheric conditions. In E. Camporeale, et al. (Eds.), Machine Learning Techniques for Space Weather (pp. 279-300). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-811788-0.00011-1222

Chen, X. R., Zong, Q. G., Zou, H., Wang, Y. F., Zhou, X. Z., and Biake, J. B. (2020a). Distribution of energetic electrons in the near earth space: new observations from the BeiDa Imaging Electron Spectrometer and the Van Allen Probes. Planet. Space Sci., 186, 104919. https://doi.org/10.1016/j.pss.2020.104919

Chen, X. R., Zong, Q. G., Zou, H., Zhou, X. Z., Li, L., Hao, Y. X., and Wang Y. F. (2020b). BeiDa imaging electron spectrometer observation of multi-period electron flux modulation caused by localized ultra-low-frequency waves. Ann. Geophys., 38(4), 801–813. https://doi.org/10.5194/angeo-38-801-2020

Chen, Z., Chen, H. F., Li, Y. F., Xiang, H. W., Yu, X. Q., Shi, W. H., Hao, Z. H., Zou, H., Zou, J. Q., and Zhong, W. Y. (2017). Variations of the relativistic electron flux after a magnetospheric compression event. Sci. China Tech. Sci., 60(4), 638–647. https://doi.org/10.1007/s11431-016-9008-3

Evans, D. S., and Greer, M. S. (2004). Polar orbiting environmental satellite space Environment monitor-2: Instrument descriptions and archive data documentation. Tech Memo version 1.3, Boulder: US Department of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research Laboratories, Space Environment Center.222

Fennell, J. F., Koons, H. C., Chen, M. W., and Blake, J. B. (2000). Internal charging: a preliminary environmental specification for satellites. IEEE Trans. Plasma Sci., 28(6), 2029–2036. https://doi.org/10.1109/27.902230

Fennell, J. F., Claudepierre, S. G., Blake, J. B., O’Brien, T. P., Clemmons, J. H., Baker, D. N., Spence, H. E., and Reeves, G. D. (2015). Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data. Geophys. Res. Lett., 42(5), 1283–1289. https://doi.org/10.1002/2014GL062874

Frederickson, A. R., Mullen, E. G., Brautigam, D. H., Kerns, K. J., Robinson, P. A., and Holman, E. G. (1991). Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment. IEEE Trans. Nucl. Sci., 38(6), 1614–1621. https://doi.org/10.1109/23.124153

Frederickson, A. R., Holeman, E. G., and Mullen, E. G. (1992). Characteristics of spontaneous electrical discharging of various insulators in space radiations. IEEE Trans. Nucl. Sci., 39(6), 1773–1782. https://doi.org/10.1109/23.211366

Frederickson, A. R. (1996). Method for estimating spontaneous pulse rate for insulators inside spacecraft. IEEE Trans. Nucl. Sci., 43(6), 2778–2782. https://doi.org/10.1109/23.556866

Hao, Y. Q., Xiao, Z., Zou, H., and Zhang, D. H. (2007). Energetic particle radiations measured by particle detector on board CBERS-1 satellite. Chin. Sci. Bull., 52(5), 665–670. https://doi.org/10.1007/s11434-007-0087-2

Hao, Y. X., Zong, Q. G., Zhou, X. Z., Zou, H., Rankin, R., Sun, Y. X., Chen, X. R., Liu, Y., Fu, S. Y., … Baker, D. N. (2020). A short-lived three-belt structure for sub-MeV electrons in the Van Allen belts: time scale and energy dependence. J. Geophys. Res. Space Phys., 125(9), e2020JA028031. https://doi.org/10.1029/2020JA028031

Johnson, M. H., and Kierein, J. (1992). Combined Release and Radiation Effects Satellite (CRRES): spacecraft and mission. J. Spacecr. Rockets., 29(4), 556–563. https://doi.org/10.2514/3.55641

Leach, R. D., and Alexander, M. B. (1995). Failures and anomalies attributed to spacecraft charging. NASA Reference Publication 1375, Huntsville: NASA.222

Li, L., Zhou, X. Z., Zong, Q. G., Chen, X. R., Zou, H., Ren, J., Hao, Y. X., and Zhang, X. G. (2017a). Ultralow frequency wave characteristics extracted from particle data: application of IGSO observations. Sci. China Technol. Sci., 60(3), 419–424. https://doi.org/10.1007/s11431-016-0702-4

Li, L., Zhou, X. Z., Zong, Q. G., Rankin, R., Zou, H., Liu, Y., Chen, X. R., and Hao, Y. X. (2017b). Charged particle behavior in localized ultralow frequency waves: theory and observations. Geophys. Res. Lett., 44(12), 5900–5908. https://doi.org/10.1002/2017GL073392

Li, W., and Hudson, M. K. (2019). Earth's Van Allen radiation belts: from discovery to the Van Allen Probes era. J. Geophys. Res. Space Phys., 124(11), 8319–8351. https://doi.org/10.1029/2018JA025940

Liu, Z. Y., Zong, Q. G., Hao, Y. X., Liu, Y., and Chen, X. R. (2018). The radial propagation characteristics of the injection front: a statistical study based on BD-IES and Van Allen probes observations. J. Geophys. Res. Space Phys., 123(3), 1927–1937. https://doi.org/10.1002/2018JA025185

Liu, Z. Y., Zong, Q. G., Zou, H., Wang, Y. F., and Wang, B. (2019). Drifting electron holes occurring during geomagnetically quiet times: BD-IES observations. J. Geophys. Res. Space Phys., 124(11), 8695–8706. https://doi.org/10.1029/2019JA027194

Luo, L., Zou, H., Zong, Q. G., Wang, L. H., Chen, H. F., Shi, W. H., and Yu, X. Q. (2015). Anti-proton contamination design of the imaging energetic electron spectrometer based on Geant4 simulation. Sci. China Technol. Sci., 58(8), 1385–1391. https://doi.org/10.1007/s11431-015-5863-7

Mann, I. R., Ozeke, L. G., Murphy, K. R., Claudepierre, S. G., Turner, D. L., Baker, D. N., Bae, I. J., Kale, A., Milling, D. K., … Honary, F. (2016). Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt. Nat. Phys., 12(10), 978–983. https://doi.org/10.1038/nphys3799

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev., 179(1-4), 3–27. https://doi.org/10.1007/s11214-012-9908-y

Miyoshi, Y., Ono, T., Takashima, T., Asamura, K., Hirahara, M., Kasaba, Y. et al. (2015). The energization and radiation in geospace (ERG) project. Geophys. Monogr., 199, 103–116.

Olson, W. P., and Pfitzer, K. A. (1977). Magnetospheric magnetic field modeling. Technical Report, Huntington Beach, California: McDonnell Douglas Astronautics Co.222

Selesnick, R. S., Su, Y. J., and Blake, J. B. (2016). Control of the innermost electron radiation belt by large-scale electric fields. J. Geophys. Res. Space Phys., 121(9), 8417–8427. https://doi.org/10.1002/2016JA022973

Tuszewski M., Cayton T. E., Ingraham J. C., et al. (2004). Bremsstrahlung effects in energetic particle detectors. Space Weather, 2, S10S01.

Violet, M. D., and Frederickson, A. R. (1993). Spacecraft anomalies on the CRRES satellite correlated with the environment and insulator samples. IEEE Trans. Nucl. Sci., 40(6), 1512–1520. https://doi.org/10.1109/23.273511

Wang, C. Q., Zhang, X., Zhang, L. G., Zhang, R. Y., Jin, L. Q., Sun, Y. Q., Jing, T., Zhang K. Y., Zhang, H. X., … Chang, Z. (2017). Space radiation environment observations and applications based on GEO satellites. Aerosp. Shanghai (in Chinese) , 34(4), 85–95. https://doi.org/10.19328/j.cnki.1006-1630.2017.04.011

Wang, L. H., Zong, Q. G., Shi, Q. Q., Wang, Y. F., Tu, C. Y., He, J. S., Tian, H., Wimmer-Schweingruber, R. F., and Zou, H. (2017). Discrete energetic (~50−200 keV) electron events in the high-altitude cusp/polar cap/lobe. Sci. China Technol. Sci., 60(12), 1935–1940. https://doi.org/10.1007/s11431-017-9119-x

Wilken, B., Axford, W. I., Daglis, I., Daly, P., Güttler, W., Ip, W. H., Korth, A., Kremser, G., Livi, S., … Ullaland, S. (1997). RAPID-The imaging energetic particle spectrometer on cluster. Space Sci. Rev., 79(1-2), 399–473. https://doi.org/10.1023/A:1004994202296

Xiao, Z., Zou, J. Q., Zou, H., Zhong, W. Y., Huo, H. D., Bao, S. L., Xu, P. F., Zhu, W. M., and Wu, Z. X. (2003). Energetic particle detector on board ‘ZY-1’ satellite. Acta Sci. Nat. Univ. Pekinensis (in Chinese) , 39(3), 361–369. https://doi.org/10.3321/j.issn:0479-8023.2003.03.011

Yin, Z. F., Zou, H., Ye, Y. G., Zong, Q. G., and Wang, Y. F. (2019). Superposed epoch analysis of the energetic electron flux variations during CIRs measured by BD-IES. Space Wea., 17(12), 1765–1782. https://doi.org/10.1029/2019SW002296

Yu, X. Q., Song S. Y., Chen H. F., Qu, Y. N., Zou, H., Zong, Q. G., Shi, W. H., Zou, J. P., Zhong, W. Y., … Shao, S. P. (2020). Monitoring deep dielectric charging effects in space. IEEE Trans. Nucl. Sci., 67(4), 716–721. https://doi.org/10.1109/TNS.2019.2963171

Zong, Q. G., Hao, Y. X., Zou, H., Fu, S. Y., Zhou, X. Z., Ren, J., Wang, L. H., Yuan, C. J., Liu, Z. Y., … Wang, Y. F. (2016). Radial propagation of magnetospheric substorm-injected energetic electrons observed using a BD-IES instrument and Van Allen Probes. Sci. China Earth Sci., 59(7), 1508–1516. https://doi.org/10.1007/s11430-016-0039-0

Zong, Q. G., Wang, Y. F., Zou, H., Wang, L. H., Rankin, R., and Zhang, X. X. (2018). New magnetospheric substorm injection monitor: image electron spectrometer on board a Chinese navigation IGSO satellite. Space Wea., 16(2), 121–125. https://doi.org/10.1002/2017SW001708

Zou, H., Xiao, Z., Zou, J. Q., Zhong, W. Y., Hao, Y. Q., Zhang, D. H., Ma, Y. Q., Wang, H. Y., Xu, Y. P., … Wu, Z. X. (2004). A comparison between detections of energetic electron by ZY1/CBMC and SZ2/XD. Chin. J. Geophys., 47(4), 644–651. https://doi.org/10.1002/cjg2.3532

Zou, H., Xiao, Z., Hao, Y. Q., Zou, J. Q., Zhu, W. M., Wu, Z. X., Xiang, H. W. (2006a). Analysis of the observation of particle detector inside 'CBERS-1' satellite under solar quiet conditions. Sci. China Ser. E, 49(3), 342–357. https://doi.org/10.1007/s11431-006-0342-9

Zou, H., Xiao, Z., Hao, Y. Q., Zou, J. Q., Zhong, W. Y., Wu, Z. X., Xiang, H. W., and Zhu, W. M. (2006b). Observation of the disturbed events by the particle detector inside “ZY-1” satellite. Chin. J. Geophys., 49(3), 559–564. https://doi.org/10.1002/cjg2.869

Zou, H., Chen, H. F., Zou, J. Q., Shi, W. H., Xiao, Z., Hao, Y. Q., Wu, Z. X., Xiang, H. W., and Zhu, W. M. (2007). Comparison between the observation of the particle detector inside 'ZY-1' Satellite and the model of the radiation belt. Chin. J. Geophys., 50(3), 593–598. https://doi.org/10.1002/cjg2.1071

Zou, H., Luo, L., Li, C. F., Jia, X. H., Xu, F., Chen, H. F., Chen, J., Shi, W. H., Yu, X. Q., and Zou, J. Q. (2013). Angular response of ‘pin-hole’ imaging structure measured by collimated β source. Sci. China Technol. Sci., 56(11), 2675–2680. https://doi.org/10.1007/s11431-013-5376-1

Zou, H., Ye, Y. G., Zong, Q. G., Chen, H. F., Zou, J. Q., Chen, J., Shi, W. H., Yu, X. Q., Zhong, W. Y., … Zhang, X. X. (2018). Imaging energetic electron spectrometer on board a Chinese navigation satellite in the inclined GEO orbit. Sci. China Technol. Sci., 61(12), 1845–1865. https://doi.org/10.1007/s11431-018-9321-7

Zou, H., Ye, Y. G., Zong, Q. G., Chen, H. F., Luo, L., Zhou, X. Z., Chen, X. R., Hao, Y. X., Ren, J. … Zhang, X. X. (2019). Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer on board a Chinese IGSO navigation satellite. Sci. China Technol. Sci., 62(7), 1169–1181. https://doi.org/10.1007/s11431-017-9314-6

[1]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[2]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[3]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[4]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060

[5]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[6]

Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046

[7]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[8]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[9]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[10]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[11]

QingHua Huang, 2021: Annual Meeting minutes of the Chinese Geoscience Union, 2020, Earth and Planetary Physics, 5, 121-121. doi: 10.26464/epp2021013

[12]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[13]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[14]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[15]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[16]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[17]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[18]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[19]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

[20]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Energetic electron detection packages on board Chinese navigation satellites in MEO

YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao