Citation:
Huang, H. T., Yu, Y. Q., Cao, J. B., Dai, L. and Wang, R. S. (2021). On the ion distributions at the separatrices during symmetric magnetic reconnection. Earth Planet. Phys., 5(2), 205–217doi: 10.26464/epp2021019
2021, 5(2): 205-217. doi: 10.26464/epp2021019
On the ion distributions at the separatrices during symmetric magnetic reconnection
1. | School of Space and Environment, Beihang University, Beijing 100191, China |
2. | Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100191, China |
3. | State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China |
4. | Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026, China |
A particle-in-cell simulation of symmetric reconnection with zero guide field is carried out to understand the dynamics of ions along the separatrices. Through the investigation of ion velocity distributions at different moments and locations along the separatrices, a typical distribution is found: two counter-streaming populations in the perpendicular direction, with another two populations accelerated into distinct energy levels in the parallel direction. Backward tracing of ions reveals that the counter-streaming cores are mostly composed of ions initially located at the same side of the separatrix, while the other two accelerated populations in the parallel direction are composed of ions crossing through the neutral sheet. Through analysis of energy conversion of these populations, it is found that the ion energization along the separatrix is attributable primarily to the Hall electric field, while that in the region between the two separatrices is caused primarily by the induced reconnection electric field. For the counter-streaming population, the low-energy ions that cross the separatrix twice are affected by both Hall and reconnection electric fields, while the high-energy ions that directly enter the separatrix from the unperturbed plasma are energized mainly by the Hall electric field. For the two energized populations in the parallel direction, the ions with lower-energy are accelerated mainly by the in-plane electric field and the Hall electric field on the opposite side of the separatrix, whereas the ions with higher-energy not only experience the same energization process but also are constantly accelerated by the reconnection electric field.
Aunai, N., Belmont, G., and Smets, R. (2011). Proton acceleration in antiparallel collisionless magnetic reconnection: kinetic mechanisms behind the fluid dynamics. J. Geophys. Res.: Space Phys., 116(A9), A0932. https://doi.org/10.1029/2011JA016688 |
Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L. J., Moore, T. E., Ergun, R. E., Eastwood, J. P., Gershman, D. J., Cassak, P. A., … Chandler, M. (2016). Electron-scale measurements of magnetic reconnection in space. Science, 352(6290), aaf2939. https://doi.org/10.1126/science.aaf2939 |
Chen, L. J., Hesse, M., Wang, S., Bessho, N., and Daughton, W. (2016). Electron energization and structure of the diffusion region during asymmetric reconnection. Geophys. Res. Lett., 43(6), 2405–2412. https://doi.org/10.1002/2016GL068243 |
Dai, L. (2009). Collisionless magnetic reconnection via Alfvén eigenmodes. Phys. Rev. Lett., 102(24), 245003. https://doi.org/10.1103/PhysRevLett.102.245003 |
Dai, L., Wang, C., Zhang, Y. C., Lavraud, B., Burch, J., Pollock, C., and Torbert, R. B. (2017). Kinetic Alfvén wave explanation of the Hall fields in magnetic reconnection. Geophys. Res. Lett., 44(2), 634–640. https://doi.org/10.1002/2016GL071044 |
Dai, L. (2018). Structures of hall fields in asymmetric magnetic reconnection. J. Geophys. Res.: Space Phys., 123(9), 7332–7341. https://doi.org/10.1029/2018JA025251 |
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B., and Bowers, K. J. (2011). Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys., 7(7), 539–542. https://doi.org/10.1038/nphys1965 |
Drake, J. F., Shay, M. A., Thongthai, W., and Swisdak, M. (2005). Production of energetic electrons during magnetic reconnection. Phys. Rev. Lett., 94(9), 095001. https://doi.org/10.1103/PhysRevLett.94.095001 |
Drake, J. F., Swisdak, M., Phan, T. D., Cassak, P. A., Shay, M. A., Lepri, S. T., Lin, R. P., Quataert, E., and Zurbuchen, T. H. (2009). Ion heating resulting from pickup in magnetic reconnection exhausts. J. Geophys. Res.: Space Phys., 114(A5), A05111. https://doi.org/10.1029/2008JA013701 |
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2), 47. https://doi.org/10.1103/PhysRevLett.6.47 |
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., Sergeev, V. A., Huang, S. Y., Kronberg, E. A., and Daly, P. W. (2012). Pitch angle distribution of suprathermal electrons behind dipolarization fronts: a statistical overview. J. Geophys. Res.: Space Phys., 117(A12), A12221. https://doi.org/10.1029/2012JA018141 |
Fu, S., Huang, S. Y., Zhou, M., Ni, B. B., and Deng, X. H. (2018). Tripolar electric field Structure in guide field magnetic reconnection. Ann. Geophys., 36(2), 373–379. https://doi.org/10.5194/angeo-36-373-2018 |
Fu, X. R., Lu, Q. M., and Wang, S. (2006). The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas, 13(1), 012309. https://doi.org/10.1063/1.2164808 |
Fujimoto, K. (2014). Wave activities in separatrix regions of magnetic reconnection. Geophys. Res. Lett., 41(8), 2721–2728. https://doi.org/10.1002/2014GL059893 |
Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Markidis, S., Eastwood, J. P., and Ergun, R. (2014). Čerenkov emission of quasiparallel whistlers by fast electron phase-space holes during magnetic reconnection. Phys. Rev. Lett., 112(14), 145002. https://doi.org/10.1103/PhysRevLett.112.145002 |
Gurram, H., Egedal, J., and Daughton, W. (2020). Mode converting Alfvén waves from magnetic reconnection enhancing the energy source for the aurora borealis. arXiv preprint arXiv: 2004.11755.222 |
Hesse, M., Aunai, N., Sibeck, D., and Birn, J. (2014). On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett., 41(24), 8673–8680. https://doi.org/10.1002/2014GL061586 |
Hoshino, M., Mukai, T., Terasawa, T., and Shinohara, I. (2001). Suprathermal electron acceleration in magnetic reconnection. J. Geophys. Res.: Space Phys., 106(A11), 25979–25997. https://doi.org/10.1029/2001JA900052 |
Huang, C., Wu, M. Y., Lu, Q. M., Wang, R. S., and Wang, S. (2015). Electron acceleration in the dipolarization front driven by magnetic reconnection. J. Geophys. Res.: Space Phys., 120(3), 1759–1765. https://doi.org/10.1002/2014JA020918 |
Huang, H. T., Yu, Y. Q., Dai, L., and Wang, T. Y. (2018). Kinetic Alfvén waves excited in two‐dimensional magnetic reconnection. J. Geophys. Res.: Space Phys., 123(8), 6655–6669. https://doi.org/10.1029/2017JA025071 |
Huang, S. Y., Vaivads, A., Khotyaintsev, Y. V., Zhou, M., Fu, H. S., Retinò, A., Deng, X. H., André, M., Cully, M., … Pang, Y. (2012). Electron acceleration in the reconnection diffusion region: cluster observations. Geophys. Res. Lett., 39(11), L11103. https://doi.org/10.1029/2012GL051946 |
Huang, S. Y., Fu, H. S., Yuan, Z. G., Vaivads, A., Khotyaintsev, Y. V., Retino, A., Zhou, M., Graham, D. B., Fujimoto, K., … Zhou, X. (2016a). Two types of whistler waves in the hall reconnection region. J. Geophys. Res.: Space Phys., 121(7), 6639–6646. https://doi.org/10.1002/2016JA022650 |
Huang, S. Y., Retino, A., Phan, T. D., Daughton, W., Vaivads, A., Karimabadi, H., Zhou, W., Sahraoui, F., Li, G. L., … Wang, D. D. (2016b). In situ observations of flux rope at the separatrix region of magnetic reconnection. J. Geophys. Res.: Space Phys., 121(1), 205–213. https://doi.org/10.1002/2015JA021468 |
Huang, S. Y., Yuan, Z. G., Sahraoui, F., Fu, H. S., Pang, Y., Zhou, M., Fujimoto, K., Deng, X. H., Retinò, A., … Li, H. M. (2017). Occurrence rate of whistler waves in the magnetotail reconnection region. J. Geophys. Res.: Space Phys., 122(7), 7188–7196. https://doi.org/10.1002/2016JA023670 |
Karimabadi, H., Daughton, W., and Scudder, J. (2007). Multi‐scale structure of the electron diffusion region. Geophys. Res. Lett., 34(13), L13104. https://doi.org/10.1029/2007GL030306 |
Lapenta, G., Berchem, J., Zhou, M., Walker, R. J., El‐Alaoui, M., Goldstein, M. L., Paterson, W. R., Giles, B. L., Pollock, C. J., … Burch, J. L. (2017). On the origin of the crescent‐shaped distributions observed by MMS at the magnetopause. J. Geophys. Res.: Space Phys., 122(2), 2024–2039. https://doi.org/10.1002/2016JA023290 |
Li, X. C., Guo, F., Li, H., and Li, G. (2015). Nonthermally dominated electron acceleration during magnetic reconnection in a low-beta plasma. Astrophys. J. Lett., 811(2), L24. https://doi.org/10.1088/2041-8205/811/2/L24 |
Liang, J., Lin, Y., Johnson, J. R., Wang, X. Y., and Wang, Z. X. (2016). Kinetic Alfvén waves in three-dimensional magnetic reconnection. J. Geophys. Res.: Space Phys., 121(7), 6526–6548. https://doi.org/10.1002/2016JA022505 |
Markidis, S., Lapenta, G., and Rizwan-uddin. (2010). Multi-scale simulations of plasma with iPIC3D. Math. Comput. Simul., 80(7), 1509–1519. https://doi.org/10.1016/j.matcom.2009.08.038 |
Shay, M. A., Phan, T. D., Haggerty, C. C., Fujimoto, M., Drake, J. F., Malakit, K., Cassak, P. A., and Swisdak, M. (2016). Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection. Geophys. Res. Lett., 43(9), 4145–4154. https://doi.org/10.1002/2016GL069034 |
Wang, H. Y., Lu, Q. M., Huang, C., and Wang, S. (2016). The mechanisms of electron acceleration during multiple X line magnetic reconnection with a guide field. Astrophys. J., 821(2), 84. https://doi.org/10.3847/0004-637X/821/2/84 |
Wang, H. Y., Lu, Q. M., Huang, C., and Wang, S. (2017). Electron acceleration in a secondary magnetic island formed during magnetic reconnection with a guide field. Phys. Plasmas, 24(5), 052113. https://doi.org/10.1063/1.4982813 |
Wang, R. S., Du, A. M., Nakamura, R., Lu, Q. M., Khotyaintsev, Y. V., Volwerk, M., Zhang, T. L., Kronberg, E. A., Daly, P. W., and Fazakerley, A. N. (2013). Observation of multiple sub-cavities adjacent to single separatrix. Geophys. Res. Lett., 40(11), 2511–2517. https://doi.org/10.1002/grl.50537 |
Wang, S., Chen, L. J., Hesse, M., Bessho, N., Gershman, D. J., Dorelli, J., Giles, B., Torbert, R. B., Pollock, C. J., … Saito, Y. (2016). Two-scale ion meandering caused by the polarization electric field during asymmetric reconnection. Geophys. Res. Lett., 43(15), 7831–7839. https://doi.org/10.1002/2016GL069842 |
Wang, S., Chen, L. J., Bessho, N., Hesse, M., Yoo, J., Yamada, M., Liu, Y. H., Gershman, D. J., Giles, B., and Moore, T. E. (2018). Energy conversion and partition in the asymmetric reconnection diffusion region. J. Geophys. Res.: Space Phys., 123(10), 8185–8205. https://doi.org/10.1029/2018JA025519 |
Wygant, J. R., Cattell, C. A., Lysak, R., Song, Y., Dombeck, J., McFadden, J., Mozer, F. S., Carlson, C. W., Parks, G., … Mouikis, C. (2005). Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. J. Geophys. Res.: Space Phys., 110(A9), A09206. https://doi.org/10.1029/2004JA010708 |
Yamada, M., Kulsrud, R., and Ji, H. T. (2010). Magnetic reconnection. Rev. Mod. Phys., 82(1), 603. https://doi.org/10.1103/RevModPhys.82.603 |
Yamada, M., Yoo, J., Jara-Almonte, J., Ji, H. T., Kulsrud, R. M., and Myers, C. E. (2014). Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma. Nat. Commun., 5, 4774. https://doi.org/10.1038/ncomms5774 |
Zenitani, S., Hesse, M., Klimas, A., and Kuznetsova, M. (2011). New measure of the dissipation region in collisionless magnetic reconnection. Phys. Rev. Lett., 106(19), 195003. https://doi.org/10.1103/PhysRevLett.106.195003 |
Zhou, M., Ashour-Abdalla, M., Deng, X. H., Schriver, D., El-Alaoui, M., and Pang, Y. (2009). THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail. Geophys. Res. Lett., 36(20), L20107. https://doi.org/10.1029/2009GL040663 |
Zhou, M., Deng, X. H., Pang, Y., Huang, S. Y., Yuan, Z. G., Li, H. M., Xu, X. J., Wang, Y. H., Yan, M., and Wang, D. D. (2012). Revealing the sub-structures of the magnetic reconnection separatrix via particle-in-cell simulation. Phys. Plasmas, 19(7), 072907. https://doi.org/10.1063/1.4739283 |
Zhou, X. Z., Angelopoulos, V., Runov, A., Sitnov, M. I., Zong, Q. G., and Pu, Z. Y. (2009). Ion distributions near the reconnection sites: comparison between simulations and THEMIS observations. J. Geophys. Res.: Space Phys., 114(A12), A12211. https://doi.org/10.1029/2009JA014614 |
Zhou, X. Z., Angelopoulos, V., Sergeev, V. A., and Runov, A. (2010). Accelerated ions ahead of earthward propagating dipolarization fronts. J. Geophys. Res.: Space Phys., 115(A5), A00I03. https://doi.org/10.1029/2010JA015481 |
Zhou, X. Z., Pan, D. X., Angelopoulos, V., Runov, A., Zong, Q. G., and Pu, Z. Y. (2016). Understanding the ion distributions near the boundaries of reconnection outflow region. J. Geophys. Res.: Space Phys., 121(10), 9400–9410. https://doi.org/10.1002/2016JA022993 |
[1] |
Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047 |
[2] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[3] |
Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022 |
[4] |
ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007 |
[5] |
JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002 |
[6] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[7] |
BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003 |
[8] |
YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028 |
[9] |
YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052 |
[10] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[11] |
ChuanPeng Hou, JianSen He, Lei Zhang, Ying Wang, Die Duan, 2021: Dynamics of the charged particles released from a Sun-grazing comet in the solar corona, Earth and Planetary Physics. doi: 10.26464/epp2021023 |
[12] |
YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021 |
[13] |
ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049 |
[14] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[15] |
Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005 |
[16] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[17] |
YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030 |
[18] |
ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011 |
[19] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[20] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)