Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Wang, L. M. and He, X. B. (2020). Sharpness of the paired 660-km discontinuity beneath the Izu-Bonin area. Earth Planet. Phys., 4(6), 1–12doi: 10.26464/epp2020067

doi: 10.26464/epp2020067


Sharpness of the paired 660-km discontinuity beneath the Izu-Bonin area


Department of Marine Sciences, Zhejiang University, Zhoushan Zhejiang 316021, China


Marine Acoustics and Remote Sensing Laboratory, Zhejiang Ocean University, Zhoushan Zhejiang 316022, China

Corresponding author: XiaoBo He,

Received Date: 2020-01-31
Web Publishing Date: 2020-08-01

The 660-km discontinuity that separates the Earth's upper and lower mantle has primarily been attributed to phase changes in olivine and other minerals. Resolving the sharpness is essential for predicting the composition of the mantle and for understanding its dynamic effects. In this study, we used S-to-P conversions from the 660-km interface, termed S660P, arriving in the P-wave coda from one earthquake in the Izu–Bonin subduction zone recorded by stations in Alaska. The S660P signals were of high quality, providing us an unprecedented opportunity to resolve the sharpness of the discontinuity. Our study demonstrated, based on the impedance contrast given by the IASP91 model, that the discontinuity has a transitional thickness of ~5 km. In addition, we observed a prominent arrival right after the S660P, which was best explained by S-to-P conversions from a deeper discontinuity at a depth of ~720 km with a transitional thickness of ~20 km, termed S720P. The 720-km discontinuity is most likely the result of a phase transition from majoritic garnet to perovskite in the segregated oceanic crust (mainly the mid-oceanic ridge basalt composition) at the uppermost lower mantle beneath this area. The inferred phase changes are also consistent with predictions from mineral physics experiments.

Key words: 660-km discontinuity, S-to-P conversions, Izu–Bonin, sharpness, mid-oceanic ridge basalt

Ai, Y. S., Zheng, T. Y., Xu, W. W., He, Y. M., and Dong, D. (2003). A complex 660 km discontinuity beneath northeast China. Earth Planet. Sci. Lett., 212(1-2), 63–71.

Benz, H. M., and Vidale, J. E. (1993). Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature, 365(6442), 147–150.

Castle, J. C., and Creager, K. C. (2000). Local sharpness and shear wave speed jump across the 660-km discontinuity. J. Geophys. Res. Solid Earth, 105(B3), 6191–6200.

Crotwell, H. P., Owens, T. J., and Ritsema, J. (1999). The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismol. Res. Lett., 70(2), 154–160.

Cui, Q. H., Li, W. L., Li, G. H., Ma, M. N., Guan, X. Y., and Zhou, Y. Z. (2018). Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase. Earth Planet. Phys., 2(3), 208–219.

Deuss, A., Redfern, S. A. T., Chambers, K., and Woodhouse, J. H. (2006). The nature of the 660-Kilometer discontinuity in Earth's mantle from global seismic observations of PP precursors. Science, 311(5758), 198–201.

Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297–356.

French, S. W., and Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525(7567), 95–99.

Fukao, Y., and Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth, 118(11), 5920–5938.

He, X. B., and Zheng, Y. X. (2018). S-to-P conversions from mid-mantle slow scatterers in slab regions: observations of deep/stagnated oceanic crust?. Pure Appl. Geophys., 175(6), 2045–2055.

Hirose, H. (2002). Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. J. Geophys. Res. Solid Earth, 107(B4), ECV 3-1–ECV 3-13.

Hirose, K., Fei, Y. W., Ma, Y. Z., and Mao, H. K. (1999). The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 397(6714), 53–56.

Hu, J. F., and He, X. B. (2019). Seismic evidence for a paleoslab in the D" layer residing adjacent to the southeastern edge of the perm anomaly. Geochem. Geophys. Geosyst., 20(4), 2040–2052.

Huang, J. P., Niu, F. L., Gordon, R. G., and Cui, C. (2015). Accurate focal depth determination of oceanic earthquakes using water-column reverberation and some implications for the shrinking plate hypothesis. Earth Planet. Sci. Lett., 432, 133–141.

Ishii, T., Huang, R., Myhill, R., Fei, H. Z., Koemets, I., Liu, Z. D., Maeda, F., Yuan, L., Wang, L., … Katsura, T. (2019). Sharp 660-km discontinuity controlled by extremely narrow binary post-spinel transition. Nat. Geosci., 12(10), 869–872.

Ito, E., and Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res. Solid Earth, 94(B8), 10637–10646.

Jenkins, J., Cottaar, S., White, R. S., and Deuss, A. (2016). Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km discontinuity?. Earth Planet. Sci. Lett., 433, 159–168.

Kennett, B. L. N., and Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105(2), 429–465.

Lawrence, J. F., and Shearer, P. M. (2006). A global study of transition zone thickness using receiver functions. J. Geophys. Res. Solid Earth, 111(B6), B06307.

Lessing, S., Thomas, C., Rost, S., Cobden, L., and Dobson, D. P. (2014). Mantle transition zone structure beneath India and Western China from migration of PP and SS precursors. Geophys. J. Int., 197(1), 396–413.

Li, J., Wang, X., Wang, X. J., and Yuen, D. A. (2013). P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone. Earth Planet. Sci. Lett., 367, 71–81.

Li, J., and Yuen, D. A. (2014). Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth Planet. Sci. Lett., 385, 137–144.

Liu, Z., Park, J., and Karato, S. I. (2016). Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophys. Res. Lett., 43(6), 2480–2487.

Niu, F. L. (2014). Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray. Earth Planet. Sci. Lett., 402, 305–312.

Petersen, N., Vinnik, L., Kosarev, G., Kind, R., Oreshin, S., and Stammler, K. (1993). Sharpness of the mantle discontinuities. Geophys. Res. Lett., 20(9), 859–862.

Ringwood, A. E. (1975). Composition and Petrology of the Earth’s Mantle. New York: McGraw-Hill.222

Rost, S., and Thomas, C. (2002). Array seismology: methods and applications. Rev. Geophys., 40(3), 2-1–2-27.

Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. X., and Dueker, K. G. (2014). Dehydration melting at the top of the lower mantle. Science, 344(6189), 1265–1268.

Schultz, R., and Gu, Y. J. (2013). Multiresolution imaging of mantle reflectivity structure using SS and PP precursors. Geophys. J. Int., 195(1), 668–683.

Shearer, P. M., and Masters, T. G. (1992). Global mapping of topography on the 660-km discontinuity. Nature, 355(6363), 791–796.

Shearer, P. M. (2000). Upper mantle seismic discontinuities. In S. I. Karato, et al. (Eds.), Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (pp. 115-131). Washington: AGU.

Simmons, N. A., and Gurrola, H. (2000). Multiple seismic discontinuities near the base of the transition zone in the Earth’s mantle. Nature, 405(6786), 559–562.

Tibi, R., and Wiens, D. A. (2005). Detailed structure and sharpness of upper mantle discontinuities in the Tonga subduction zone from regional broadband arrays. J. Geophys. Res. Solid Earth, 110(B6), B06313.

Tibi, R., Wiens, D. A., Shiobara, H., Sugioka, H., and Yuan, X. H. (2007). Double seismic discontinuities at the base of the mantle transition zone near the Mariana slab. Geophys. Res. Lett., 34(16), L16316.

Vacher, P., Mocquet, A., and Sotin, C. (1998). Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys. Earth Planet. Inter., 106(3-4), 275–298.

Vitos, L., Magyari-Köpe, B., Ahuja, R., Kollár, J., Grimvall, G., and Johansson, B. (2006). Phase transformations between garnet and perovskite phases in the Earth’s mantle: a theoretical study. Phys. Earth Planet. Inter., 156(1-2), 108–116.

Wang, B. S., and Niu, F. L. (2010). A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China. J. Geophys. Res. Solid Earth, 115(B6), B06308.

Wang, R. J. (1999). A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull. Seismol. Soc. Am., 89(3), 733–741.

Wang, W. Z., and Wu, Z. Q. (2018). Elasticity of corundum at high pressures and temperatures: Implications for pyrope decomposition and Al-content effect on elastic properties of bridgmanite. J. Geophys. Res. Solid Earth, 123(2), 1201–1216.

Wessel, P., and Smith, W. H. F. (1999). Free software helps map and display data. Eos, 72(41), 441–446.

Wu, W. B., Ni, S. D., and Irving, J. C. E. (2019). Inferring Earth’s discontinuous chemical layering from the 660-kilometer boundary topography. Science, 363(6428), 736–740.

Yamazaki, A., and Hirahara, K. (1994). The thickness of upper mantle discontinuities, as inferred from short-period J-Array data. Geophys. Res. Lett., 21(17), 1811–1814.

Yang, Z. T., and He, X. B. (2015). Oceanic crust in the mid-mantle beneath west-central Pacific subduction zones: evidence from S to P converted waveforms. Geophys. J. Int., 203(1), 541–547.

Zang, S. X., Zhou, Y. Z., Ning, J. Y., and Wei, R. Q. (2006). Multiple discontinuities near 660 km beneath Tonga area. Geophys. Res. Lett., 33(20), L20312.

Zhang, M., Sun, D. Y., Wang, Y., and Wu, Z. Q. (2019). Fine structure of the 660-km discontinuity beneath southeastern China. Geophys. Res. Lett., 46(13), 7304–7314.

Zheng, Z., and Romanowicz, B. (2012). Do double “SS precursors” mean double discontinuities?. Geophys. J. Int., 191(3), 1361–1373.

Zhou, Y. Z., Yu, X. W., Yang, H., and Zang, S. X. (2012). Multiplicity of the 660-km discontinuity beneath the Izu-Bonin area. Phys. Earth Planet. Inter., 198-199, 51–60.


RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045


QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020


JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007


Jing Huang, Meng Zhou, HuiMin Li, XiaoHua Deng, Jiang Liu, ShiYong Huang, 2019: Small-scale dipolarization fronts in the Earth′s magnetotail, Earth and Planetary Physics, 3, 358-364. doi: 10.26464/epp2019036


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008


ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049


DongDong Ni, 2020: Signature of helium rain and dilute cores in Jupiter's interior from empirical equations of state, Earth and Planetary Physics, 4, 111-119. doi: 10.26464/epp2020017


Chao Xiao, WenLong Liu, DianJun Zhang, Zhao Zhang, 2020: A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements, Earth and Planetary Physics, 4, 266-273. doi: 10.26464/epp2020031


GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu, 2020: Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 364-370. doi: 10.26464/epp2020056


WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052


Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058


Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Sharpness of the paired 660-km discontinuity beneath the Izu-Bonin area

LiMing Wang, XiaoBo He