Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Kamto, P. G., Adiang, C. M., Nguiya, S., Kamguia, J. and Yap, L. (2020). Refinement of Bouguer anomalies derived from the EGM2008 model, impact on gravimetric signatures in mountainous region: Case of Cameroon Volcanic Line, Central Africa. Earth Planet. Phys., 4(6), 639–650doi: 10.26464/epp2020065

2020, 4(6): 639-650. doi: 10.26464/epp2020065

SOLID EARTH: GEODESY AND GRAVITY

Refinement of Bouguer anomalies derived from the EGM2008 model, impact on gravimetric signatures in mountainous region: Case of Cameroon Volcanic Line, Central Africa

1. 

Geodesy Research Laboratory, National Institute of Cartography (NIC), Yaounde, Cameroon

2. 

Department of Physics, Faculty of Science, University of Yaounde I, Cameroon

3. 

Laboratory E3M, Faculty of Industrial Engineering, University of Douala, Cameroon

4. 

Department of Physics, Faculty of Science, University of Douala, Cameroon

Corresponding author: Paul Gautier Kamto, gautier1994@yahoo.fr

Received Date: 2020-05-04
Web Publishing Date: 2020-11-09

Global geopotential models have not included the very high frequencies of the Earth’s external gravity field. This is called omission error. This omission error becomes more important in mountainous areas (areas with highly variable topography). The work reported here consists in reducing the omission error in measurements of Bouguer gravity anomalies, by refining the global geopotential model EGM2008 using the spectral enhancement method. This method consists in computing the residual terrain effects and then coupling them to the gravimetric signal of the global geopotential model. To compute the residual terrain effects, we used the Residual Terrain Model (RTM) technique. To refine it required a reference surface (ETOPO1) developed up to degree 2190 (the maximum degree of the EGM2008 model) and a detailed elevation model (AW3D30). Computation was performed with the TC program of the GRAVSOFT package. The topography of the study area was assumed to have a constant density of 2670 kg/m3. For the inner and outer zones, the respective integration radii of 10 km and 200 km have been chosen. We obtained very important RTM values ranging from −53.59 to 34.79 mGal. These values were added to the gravity anomalies grid of the EGM2008 model to improve accuracy at high frequencies. On a part of the Cameroon Volcanic Line and its surroundings (mountainous area), we made a comparison between the residual Bouguer anomalies before and after refinement. We report differences ranging from −37.40 to 26.40 mGal. We conclude that the impact of omission error on gravimetric signatures is observed especially in areas with high variable topography, such as on the Cameroon Volcanic Line and around the localities of Takamanda, Essu, Dumbo, and Ngambe. This finding illustrates the great influence that topography has on accurate measurement of these gravity anomalies, and thus why topography must be taken into account. We can conclude that in preparing a global geopotential model, a high resolution DTM must be used to decrease the omission error: the degree of expansion has to increase in order to take the higher frequencies into account. The refined Bouguer anomalies grid presented here can be used in addition to terrestrial gravity anomalies in the study area, especially in mountainous areas where gravimetric data are very sparse or non-existent.

Key words: residual Terrain Model, EGM2008, Omission error, refined Bouguer anomalies, mountainous area

Abd-Elmotaal, H. A., Seitz, K., Kühtreiber, N., and Heck, B. (2018). AFRGDB_V2.0: the gravity database for the geoid determination in Africa. In Proceedings of the IAG Scientific Assembly (pp. 61-70). Kobe: Springer. https://doi.org/10.1007/1345_2018_29222

Adighije, C. I. (1981). A gravity Interpretation of the Benue Trough, Nigeria. Tectonophysics, 79(1-2), 109–128. https://doi.org/10.1016/0040-1951(81)90235-3

Amante, C. and Eakins, B. W. (2008). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce, Boulder, CO.222

Apeh, O. I., Moka, E. C., Uzodinma, V. N., and Ebinne, E. S. (2019). Refinement and quantification of terrain-induced effects on global gravity data. Int. J. Geosci., 10(5), 513–526. https://doi.org/10.4236/ijg.2019.105030

Balmino, G., Vales, N., Bonvalot, S., and Briais, A. (2012). Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J. Geod., 86(7), 499–520. https://doi.org/10.1007/s00190-011-0533-4

Barthelmes, F. (2013). Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models: Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM). Scientific Technical Report STR09/02.222

Benkhelil, J. (1986). Structure and geodynamics evolution of the intracontinental Benue Trough (Nigeria). France: University of Nice.222

Benkhelil, J. (1989). The origin and evolution of the cretaceous Benue trough (Nigeria). J. Afr. Earth Sci., 8(2-4), 251–282. https://doi.org/10.1016/S0899-5362(89)80028-4

Boukeke, D. B. (1994). Structures Crustales d’Afrique Centrale Déduites des Anomalies Gravimétriques et Magnétiques: le Domaine Précambrien de la République Centrafricaine et du Sud Cameroun. France: Université de Paris Sud, 263.222

Collignon, F. (1968). Gravimétrie de Reconnaissance. Cameroun: ORSTOM, 35.222

Cratchley, C. R., Louis, P., and Ajakaiye, D. E. (1984). Geophysical and geological evidence for the Benue-Chad Basin Cretaceous Rift Valley System and its tectonic implication. J. Afr. Earth Sci., 2(2), 141–150. https://doi.org/10.1016/S0731-7247(84)80008-7

Déruelle, B., Moreau, C., Nkoumbou C., Kambou, R., Lissom, J., Njonfang, E., Ghogomu, R. T., and Nono, A. (1991). The Cameroon line: a review. In A. B. Kampunzu, et al. (Eds.), Magmatism in Extensional Structural Settings. Berlin, Heidelberg: Springer, 274-327. https://doi.org/10.1007/978-3-642-73966-8_12222

Déruelle, B., Ngounouno, I., and Demaiffe, D. (2007). The ‘Cameroon Hot Line’ (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. C. R. Geosci., 339(9), 589–600. https://doi.org/10.1016/j.crte.2007.07.007

Djomani, Y. H. P., Diament, M., and Albouy, Y. (1992). Mechanical behaviour of the lithosphere beneath the Adamawa uplift (Cameroon, West Africa) based on gravity data. J. Afr. Earth Sci., 15(1), 81–90. https://doi.org/10.1016/0899-5362(92)90009-2

Dorbath, C., Dorbath, L., Fairhead, J. D., and Stuart, G. W. (1986). A teleseismic delay time study across the Central African shear zone in the Adamawa Region of Cameroon, West Africa. Geophys. J. Roy. Astron. Soc., 86(3), 751–766. https://doi.org/10.1111/j.1365-246X.1986.tb00658.x

Drewes, H., Kuglitsch, F., Adám, J., and Rózsa, S. (2016). The Geodesist’s handbook 2016. J. Geod., 90(10), 907–1205. https://doi.org/10.1007/s00190-016-0948-z

Elf-Serepca (1981). Service d’Exploration Carte Géologique du Bassin de Garoua.222

Fairhead, J. D., and Okereke, C. S. (1987). A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic interpretation. Tectonophysics, 143(1-3), 141–159. https://doi.org/10.1016/0040-1951(87)90084-9

Forsberg, R., and Tscherning, C. C. (1981). The use of height data in gravity field approximation by collocation. J. Geophys. Res. Solid Earth, 86(B9), 7843–7854. https://doi.org/10.1029/JB086iB09p07843

Forsberg, R. (1984). A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Report 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus.222

Forsberg, R. (1985). Gravity field terrain effect computations by FFT. Bull. Géodésique, 59(4), 342–360. https://doi.org/10.1007/BF02521068

Forsberg, R., and Tscherning, C. C. (2008). An Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs. 2nd ed. National Space Institute (DTU-Space), Denmark.222

Gèze, B. (1941). Sur les massifs volcaniques du Cameroun occidental. C. R. l’Acad. Sci., 212, 498–500.

Gruber, T. (2009). Evaluation of the EGM2008 Gravity Field by Means of GPS Levelling and Sea Surface Topography Solutions. Publication the International Association of Geodesy and International Gravity Field Service, 3–17.

Hammer, S. (1939). Terrain corrections for gravimeter stations. Geophysics, 4(3), 184–194. https://doi.org/10.1190/1.1440495

Hayford, J., and Bowie, W. (1912). The effect of topography and isostatic compensation upon the intensity of gravity. Bull Amer. Geogr. Soc., 44(6), 464–465. https://doi.org/10.2307/199909

Hirt, C. (2010). Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. J. Geod., 84(3), 179–190. https://doi.org/10.1007/s00190-009-0354-x

Hirt, C., Featherstone, W. E., and Marti, U. (2010). Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J. Geod., 84(9), 557–567. https://doi.org/10.1007/s00190-010-0395-1

Hirt, C., Gruber, T., and Featherstone, W. E. (2011). Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J. Geod., 85(10), 723–740. https://doi.org/10.1007/s00190-011-0482-y

Hirt C., Kuhn, M., Claessens, S. J., Pail, R., Seitz, K., and Gruber, T. (2014). Study of the Earth's short-scale gravity field using the ERTM2160 gravity model. Comput. Geosci., 73, 71–80. https://doi.org/10.1016/j.cageo.2014.09.00

Huang, O. (2012). Terrain corrections for gravity gradiometry. Report 500, Department of Geodetic Science and Surveying, Ohio State University, Columbus.222

Ismail, Z. (2016). Détermination de l’Exactitude d’un Géoïde Gravimétrique. Paris: Paris Sciences et Lettres.222

Jekeli, C., Yanh, H. J., and Kwon, J. H. (2009). Evaluation of EGM08-Globally and Locally in South Korea. Publication the International Association of Geodesy and International Gravity Field Service, 38–49.

Kamguia, J., Tadjou, J. M., and Ngouanet, C. (2015). The mount Cameroon height determined from ground gravity data, global navigation satellite system observations and global geopotential models. Ghana J. Sci., 55, 37–49.

Kenfack, J. V., Tadjou, J. M., Kamguia, J., Tabod, C. T., and Bekoa, A. (2011). Gravity interpretation of the Cameroon Mountain (West Central Africa) based on the new and existing Bata. Int. J. Geosci., 2(4), 513–522. https://doi.org/10.4236/ijg.2011.24054

Kuisseu, T. S., Lordon, A. E., Agyingi, M. C., Shandini, Y., Mbohlieu, Y. T., and Ndifor, D. B. (2018). Geometrical configuration of the Garoua Basin, North Cameroon as deduced from earth gravitational model (EGM-2008). Anu. Inst. Geociências, 41(2), 167–176. https://doi.org/10.11137/2018_2_167_176

Leaman, D. E. (1998). The gravity terrain correction-practical considerations. Explor. Geophys., 29(3-4), 467–471. https://doi.org/10.1071/EG998467

Lordon, A. E. D., Shandini, Y., Agyingi, C. M., Yossa, M. T., Kuisseu, T. S., and Ndifor, B. D. (2017). Structural interpretation of the Mamfe Basin from satellite gravity data (EGM 2008). J. Earth Sci. Geotechn. Eng., 7(4), 45–53.

Lordon, A. E. D., Yossa, T., Agyingi, C. M., Shandini, Y., and Kuisseu, T. S. (2018). Geometrical characterisation of the Mamfe Basin from the earth gravitational model (EGM 2008). Earth Sci. Res., 7(1), 94. https://doi.org/10.5539/esr.v7n1p94

Marcel, J., Abate, E. J. M., Nouck, P. N., Ngatchou, H. E., Oyoa, V., Tabod, C. T., and Manguelle-Dicoum, E. (2016). Structure of the crust beneath the South Western Cameroon, from gravity data analysis. Int. J. Geosci., 7(8), 991–1008. https://doi.org/10.4236/ijg.2016.78075

Maurin, J. C., and Guiraud, R. (1990). Relationships between tectonics and sedimentation in the Barremo-Aptian intracontinental basins of Northern Cameroon. J. Afr. Earth Sci., 10(1-2), 331–340. https://doi.org/10.1016/0899-5362(90)90064-L

Mbom-Abane, S. (1997). Investigation géophysique en bordure du Craton du Congo (région d’Abong-Mbang/Akonolinga, Cameroun) et implications structurales. Université de Yaoundé I.222

Ngatchou, H. E., Liu, G. Y., Tabod, C. T., Kamguia, J., Nguiya, S., Tiedeu, A., and Ke, X. P. (2014). Crustal structure beneath Cameroon from EGM2008. Geod. Geodyoam, 5(1), 1–10. https://doi.org/10.3724/SP.J.1246.2014.01001

Ngounouno, I., Nkoumbou, C., and Loule, J. P. (1997). Relation entre l’évolution Tectonosédimentaire et le Magmatisme du Fossé de Garoua (Nord Cameroun). Afr. Geosci. Rev., 4, 451–460.

Nguene, F. R., Tamfu, S., Loule, J. P., Ngassa, C. (1992). Paleoenvironments of the Douala and Kribi/Campo Subbasins in Cameroon, West Africa. In R. Curnelle (Ed.), Géologie Africaine. 1er Colloque de Stratigraphie et de Paléogéographie des Bassins Sédimentaires Ouest Africains. 2ème Colloque Africain de Micropaléontologie, 6-8 Mai 1991, Libreville, Gabon. Bulletin du Centre de Recherche. Exploration–Production, Elf Aquitaine, 13, 129–139.

Nguiya, S., Pemi, M., M., Tokam, A. P., Ngatchou, H. E., and Lemotio, W. (2019). Crustal structure beneath the mount Cameroon region derived from recent gravity measurements. C. R. Geosci., 351(6), 430–440. https://doi.org/10.1016/j.crte.2019.05.001

Nnange, J. M., Djomani, Y. H., Fairhead, J. D., and Ebinger, C. (2001). Determination of the isostatic compensation mechanism of the region of the Adamawa dome, West Central Africa using the admittance technique of gravity data. Afr. J. Sci. Technol., 1(4), 29–35. https://doi.org/10.4314/ajst.v1i4.44626

Noutchogwe T. C., Tabod, C. T., and Manguelle-Dicoum, E. (2006). A gravity study of the crust beneath the Adamawa fault zone, west central Africa. J. Geophys. Eng., 3(1), 82–89. https://doi.org/10.1088/1742-2132/3/1/009

Ofoegbu, C. O., and Mohan, N. L. (1990). Interpretation of aeromagnetic anomalies over part of Southeastern Nigeria using three-dimensional Hilbert Transformation. Pure Appl. Geophys., 134(1), 13–29. https://doi.org/10.1007/BF00878077

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K. (2008). An Earth Gravitational Model to Degree 2160: EGM2008. In General Assembly of the European Geoscience Union. Vienna.222

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth, 117(B4), B04406. https://doi.org/10.1029/2011JB008916

Radhakrishna, I. V., and Krishnamacharyulu, S. K. G. (1990). Polyfit: a fortran 77 program to fit a polynomial of any order to potential field anomalies. J. Assoc. Explor. Geophys., 11, 99–105.

Regnoult, J. M. (1986). Synthèse Géologique du Cameroun. Ministère des Mines et de l’Energie, Yaoundé, 119.222

Sampietro, D., Sona, G., and Venuti, G. (2007). Residual terrain correction on the sphere by an FFT algorithm. In 1st International Symposium of the International Gravity Field Service. Istanbul: General Command of Mapping.222

Sampietro, D., Capponi, M., Mansi, H. A., Gatti, A., Marchetti, P., and Sansò, F. (2017). Space-wise approach for airborne gravity data modelling. J. Geod., 91(5), 535–545. https://doi.org/10.1007/s00190-016-0981-y

Shandini, Y., Kouske, A. P., Nguiya, S., and Marcelin, M. P. (2018). Structural setting of the Koum sedimentary basin (North Cameroon) derived from EGM2008 gravity field interpretation. Contrib. Geophys. Geod., 48(4), 281–298. https://doi.org/10.2478/congeo-2018-0013

Sheng, M. B., Shaw, C., Vaníček, P., Kingdon, R. W., Santos, M., and Foroughi, I. (2019). Formulation and validation of a global laterally varying topographical density model. Tectonophysics, 762, 45–60. https://doi.org/10.1016/j.tecto.2019.04.005

Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H. (2016). Initial validation of the 30 m-mesh global digital surface model generated by ALOS PRISM. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 157-162). Prague, Czech Republic: ISPRS.222

Takaku, J., Tadono, T., Tsutsui, K., and Ichikawa, M. (2016). Validation of ‘AW3D’ global DSM generated from ALOS PRISM. In Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 25-31). Prague, Czech Republic: ISPRS.222

Tong, L. T., and Guo, T. R. (2007). Gravity terrain effect of the seafloor topography in Taiwan. Terr. Atmos. Oceanic Sci., 18(4), 699–713. https://doi.org/10.3319/TAO.2007.18.4.699(T)

Torge, W. (2001). Geodesy (3rd ed). Berlin: de Gruyter.222

Toteu, S. F., Michard, A., Bertrand, J. M., and Rocci, G. (1987). U–Pb dating of Precambrian rocks from northern Cameroon, Orogenic evolution and chronology of the Pan African Belt of Central Africa. Precambrian Res., 37(1), 71–87. https://doi.org/10.1016/0301-9268(87)90040-4

Toteu, S. F., Penaye, J., and Djomani, Y. P. (2004). Geodynamic evolution of the Pan African Belt in Central Africa with special reference to Cameroon. Can. J. Earth Sci., 41(1), 73–85. https://doi.org/10.1139/e03-079

Wang, J. H., and Geng, Y. (2015). Terrain correction in the gradient calculation of spontaneous potential data. Chinese J. Geophys., 58(6), 654–664. https://doi.org/10.1002/cjg2.20202

Yahaya, S. I., and El Azzab, D. (2018). High-resolution residual terrain model and terrain corrections for gravity field modelling and geoid computation in Niger Republic. Geod. Cartogr., 44(3), 89–99. https://doi.org/10.3846/gac.2018.3787

Yap, L., Kandé, L. H., Nouayou, R., Kamguia, J., Ngouh, N. A., and Makuate, M. B. (2019). Vertical accuracy evaluation of freely available latest high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points. Int. J. Dig. Earth, 12(5), 500–524. https://doi.org/10.1080/17538947.2018.1458163

Zaki, A., Mansi, A. H., Selim, M., Rabah, M., and El-Fiky, G. (2018). Comparison of satellite altimetric gravity and global geopotential models with shipborne gravity in the Red Sea. Mar. Geod., 41(3), 258–269. https://doi.org/10.1080/01490419.2017.1414088

[1]

Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022

[2]

LiMing Wang, XiaoBo He, 2020: Sharpness of the paired 660-km discontinuity beneath the Izu-Bonin area, Earth and Planetary Physics, 4, 627-638. doi: 10.26464/epp2020067

[3]

Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004

[4]

ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041

[5]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[6]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[7]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[8]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

[9]

Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047

[10]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[11]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[12]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[13]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[14]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

[15]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[16]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[17]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Refinement of Bouguer anomalies derived from the EGM2008 model, impact on gravimetric signatures in mountainous region: Case of Cameroon Volcanic Line, Central Africa

Paul Gautier Kamto, Cyrille Mezoue Adiang, Severin Nguiya, Joseph Kamguia, Loudi Yap