Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Wang, Q.-Y., and Yao, H. J. (2020). Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective. Earth Planet. Phys., 4(5), 532–542doi: 10.26464/epp2020048

2020, 4(5): 532-542. doi: 10.26464/epp2020048


Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective


University Grenoble Alpes, CNRS, ISTerre, Grenoble, France


Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China


Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China


Mengcheng National Geophysical Observatory, University of Science and Technology of China, Mengcheng Anhui 233500, China

Corresponding author: Qing-Yu Wang,

Received Date: 2020-05-11
Web Publishing Date: 2020-09-25

Over the past two decades, the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures. In addition, ambient noise-based monitoring has emerged because of the feasibility of reconstructing the continuous Green’s functions. Investigating the physical properties of a subsurface medium by tracking changes in seismic wave velocity that do not depend on the occurrence of earthquakes or the continuity of artificial sources dramatically increases the possibility of researching the evolution of crustal deformation. In this article, we outline some state-of-the-art techniques for noise-based monitoring, including moving-window cross-spectral analysis, the stretching method, dynamic time wrapping, wavelet cross-spectrum analysis, and a combination of these measurement methods, with either a Bayesian least-squares inversion or the Bayesian Markov chain Monte Carlo method. We briefly state the principles underlying the different methods and their pros and cons. By elaborating on some typical noise-based monitoring applications, we show how this technique can be widely applied in different scenarios and adapted to multiples scales. We list classical applications, such as following earthquake-related co- and postseismic velocity changes, forecasting volcanic eruptions, and tracking external environmental forcing-generated transient changes. By monitoring cases having different targets at different scales, we point out the applicability of this technology for disaster prediction and early warning of small-scale reservoirs, landslides, and so forth. Finally, we conclude with some possible developments of noise-based monitoring at present and summarize some prospective research directions. To improve the temporal and spatial resolution of passive-source noise monitoring, we propose integrating different methods and seismic sources. Further interdisciplinary collaboration is indispensable for comprehensively interpreting the observed changes.

Key words: ambient noise correlation, noise-based monitoring, seismic wave velocity changes, the evolution of physical properties of the crust

Acarel, D., Bulut, F., Bohnhoff, M., and Kartal, R. (2014). Coseismic velocity change associated with the 2011 Van earthquake (M 7.1): Crustal response to a major event. Geophys. Res. Lett., 41(13), 4519–4526.

Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst., 35(3), 415–456.

Birch, F. (1961). The velocity of compressional waves in rocks to 10 kilobars: 2. J. Geophys. Res., 66(7), 2199–2224.

Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., and Larose, E. (2008a). Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. Science, 321(5895), 1478–1481.

Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., and Nercessian, A. (2008b). Towards forecasting volcanic eruptions using seismic noise. Nat. Geosci., 1(2), 126–130.

Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N. M., Briand, X., Emoto, K., and Miyake, H. (2014). Mapping pressurized volcanic fluids from induced crustal seismic velocity drops. Science, 345(6192), 80–82.

Brenguier, F., Rivet, D., Obermann, A., Nakata, N., Boué, P., Lecocq, T., Campillo, M., and Shapiro, N. (2016). 4-D noise-based seismology at volcanoes: Ongoing efforts and perspectives. J. Volcanol. Geoth. Res., 321, 182–195.

Brenguier, F., Courbis, R., Mordret, A., Campman, X., Boué, P., Chmiel, M., Takano, T., Lecocq, T., Van der Veen, W., .. Hollis, D. (2020). Noise-based ballistic wave passive seismic monitoring. Part 1: Body waves. Geophys. J. Int., 221(1), 683–691.

Bürgmann, R., and Dresen, G. (2008). Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci., 36, 531–567.

Campillo, M., and Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547–549.

Campillo, M. (2006). Phase and correlation in ‘random’ seismic fields and the reconstruction of the Green function. Pure Appl. Geophys., 163(2), 475–502.

Campillo, M., Sato, H., Shapiro, N. M., and van der Hilst, R. D. (2011). New developments on imaging and monitoring with seismic noise. C. R. Geosci., 343(8-9), 487–495.

Chen, J. H., Froment, B., Liu, Q. Y., and Campillo, M. (2010). Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake. Geophys. Res. Lett., 37(18), L18302.

Cheng, X., Niu, F. L., and Wang, B. S. (2010). Coseismic velocity change in the rupture zone of the 2008 Mw 7.9 Wenchuan earthquake observed from ambient seismic noise. Bull. Seismol. Soc. Am., 100(5B), 2539–2550.

Claerbout, J. F. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2), 264–269.

Clarke, D., Zaccarelli, L., Shapiro, N. M., and Brenguier, F. (2011). Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophys. J. Int., 186(2), 867–882.

Colombi, A., Chaput, J., Brenguier, F., Hillers, G., Roux, P., and Campillo, M. (2014). On the temporal stability of the coda of ambient noise correlations. C. R. Geosci., 346(11-12), 307–316.

Donaldson, C., Caudron, C., Green, R. G., Thelen, W. A., and White, R. S. (2017). Relative seismic velocity variations correlate with deformation at Kīlauea volcano. Sci. Adv., 3(6), e1700219.

Donaldson, C., Winder, T., Caudron, C., and White, R. S. (2019). Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland’s Northern Volcanic Zone. Sci. Adv., 5(11), eaax6642.

Durand, S., Montagner, J. P., Roux, P., Brenguier, F., Nadeau, R. M., and Ricard, Y. (2011). Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophys. Res. Lett., 38(13), L13303.

Field, E. H., Zeng, Y. H., Johnson, P. A., and Beresnev, I. A. (1998). Nonlinear sediment response during the 1994 Northridge earthquake: Observations and finite source simulations. J. Geophys. Res.: Solid Earth, 103(B11), 26869–26883.

Froment, B., Campillo, M., Roux, P., Gouédard, P., Verdel, A., and Weaver, R. L. (2010). Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics, 75(5), SA85–SA93.

Froment, B., Campillo, M., Chen, J. H., and Liu, Q. Y. (2013). Deformation at depth associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake from seismic ambient noise monitoring. Geophys. Res. Lett., 40(1), 78–82.

Hadziioannou, C., Larose, E., Coutant, O., Roux, P., and Campillo, M. (2009). Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments. J. Acoust. Soc. Am., 125(6), 3688–3695.

Hillers, G., Campillo, M., and Ma, K. F. (2014). Seismic velocity variations at TCDP are controlled by MJO driven precipitation pattern and high fluid discharge properties. Earth Planet. Sci. Lett., 391, 121–127.

Hillers, G., Ben-Zion, Y., Campillo, M., and Zigone, D. (2015a). Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise. Geophys. J. Int., 202(2), 920–932.

Hillers, G., Retailleau, L., Campillo, M., Inbal, A., Ampuero, J. P., and Nishimura, T. (2015b). In situ observations of velocity changes in response to tidal deformation from analysis of the high-frequency ambient wavefield. J. Geophys. Res.: Solid Earth, 120(1), 210–225.

Hillers, G., Husen, S., Obermann, A., Planès, T., Larose, E., and Campillo, M. (2015c). Noise-based monitoring and imaging of aseismic transient deformation induced by the 2006 Basel reservoir stimulation. Geophysics, 80(4), KS51–KS68.

Hirose, T., Nakahara, H., and Nishimura, T. (2017). Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: Application to Sakurajima volcano, Japan. Earth, Planets and Space, 69, 42.

Hirose, T., Nakahara, H., and Nishimura, T. (2019). A passive estimation method of scattering and intrinsic absorption parameters from envelopes of seismic ambient noise cross-correlation functions. Geophys. Res. Lett., 46(7), 3634–3642.

Hong, T. K., Lee, J., Chi, D., and Park, S. (2017). Seismic velocity changes in the backarc continental crust after the 2011 Mw 9.0 Tohoku-Oki megathrust earthquake. Geophys. Res. Lett., 44(21), 10997–11003.

Hotovec-Ellis, A. J., Gomberg, J., Vidale, J. E., and Creager, K. C. (2014). A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry. J. Geophys. Res.: Solid Earth, 119(3), 2199–2214.

Ikuta, R., Yamaoka, K., Miyakawa, K., Kunitomo, T., and Kumazawa, M. (2002). Continuous monitoring of propagation velocity of seismic wave using ACROSS. Geophys. Res. Lett., 29(13), 5–1.

James, S. R., Knox, H. A., Abbott, R. E., and Screaton, E. J. (2017). Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost. Geophys. Res. Lett., 44(9), 4018–4026.

Johnson, P., and Sutin, A. (2005). Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am., 117(1), 124–130.

Karageorgi, E., Clymer, R., and McEvilly, T. V. (1992). Seismological studies at Parkfield. II. Search for temporal variations in wave propagation using vibroseis. Bull. Seismol. Soc. Am., 82(3), 1388–1415.

Larose, E., Derode, A., Clorennec, D., Margerin, L., and Campillo, M. (2005a). Passive retrieval of Rayleigh waves in disordered elastic media. Phys. Rev. E, 72(4), 046607.

Larose, E., Khan, A., Nakamura, Y., and Campillo, M. (2005b). Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett., 32(16), L16201.

Larose, E., Roux, P., Campillo, M., and Derode, A. (2008). Fluctuations of correlations and Green’s function reconstruction: Role of scattering. J. Appl. Phys., 103(11), 114907.

Lecocq, T., Longuevergne, L., Pedersen, H. A., Brenguier, F., and Stammler, K. (2017). Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling. Sci. Rep., 7, 14241.

Liu, Z. K., Huang, J. L., Peng, Z. G., and Su, J. R. (2014). Seismic velocity changes in the epicentral region of the 2008 Wenchuan earthquake measured from three-component ambient noise correlation techniques. Geophys. Res. Lett., 41(1), 37–42.

Liu, Z. K., Huang, J. L., He, P., and Qi, J. J. (2018). Ambient noise monitoring of seismic velocity around the Longmenshan fault zone from 10 years of continuous observation. J. Geophys. Res.: Solid Earth, 123(10), 8979–8994.

Liu, Z. Q., Liang, C. T., Zhu, Z. J., Wang, L., Jiang, N. B., Wang, C. L., and Wu, Z. B. (2019). The complex velocity variation induced by the precipitation and the 2018 eruption of the Kilauea Volcano in Hawaii revealed by ambient noise. Seismol. Res. Lett., 90(6), 2154–2164.

Lobkis, O. I., and Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. J. Acoust. Soc. Am., 110(6), 3011–3017.

Lobkis, O. I., and Weaver, R. L. (2003). Coda-wave interferometry in finite solids: Recovery of P- to S conversion rates in an elastodynamic billiard. Physical Review Letters, 90(25(Pt 1)), 254302.

Lyakhovsky, V., Reches, Z., Weinberger, R., and Scott, T. E. (1997). Non-linear elastic behaviour of damaged rocks. Geophys. J. Int., 130(1), 157–166.

Lyakhovsky, V., Hamiel, Y., Ampuero, J. P., and Ben-Zion, Y. (2009). Non-linear damage rheology and wave resonance in rocks. Geophys. J. Int., 178(2), 910–920.

Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., and Jaboyedoff, M. (2012). Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J. Geophys. Res.: Earth Surf., 117(F1), F01030.

Mao, S. J., Campillo, M., van der Hilst, R. D., Brenguier, F., Stehly, L., and Hillers, G. (2019a). High temporal resolution monitoring of small variations in crustal strain by dense seismic arrays. Geophys. Res. Lett., 46(1), 128–137.

Mao, S. J., Mordret, A., Campillo, M., Fang, H. J., and van der Hilst, R. D. (2020). On the measurement of seismic traveltime changes in the time-frequency domain with wavelet cross-spectrum analysis. Geophys. J. Int., 221(1), 550–568.

Margerin, L., Planès, T., Mayor, J., and Calvet, M. (2016). Sensitivity kernels for coda-wave interferometry and scattering tomography: Theory and numerical evaluation in two-dimensional anisotropically scattering media. Geophys. J. Int., 204(1), 650–666.

Mayor, J., Margerin, L., and Calvet, M. (2014). Sensitivity of coda waves to spatial variations of absorption and scattering: Radiative transfer theory and 2-D examples. Geophys. J. Int., 197(2), 1117–1137.

Meier, U., Shapiro, N. M., and Brenguier, F. (2010). Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise. Geophys. J. Int., 181(2), 985–996.

Mikesell, T. D., Malcolm, A. E., Yang, D., and Haney, M. M. (2015). A comparison of methods to estimate seismic phase delays: Numerical examples for coda wave interferometry. Geophys. J. Int., 202(1), 347–360.

Mordret, A., Jolly, A. D., Duputel, Z., and Fournier, N. (2010). Monitoring of phreatic eruptions using interferometry on retrieved cross-correlation function from ambient seismic noise: Results from Mt. Ruapehu, New Zealand. J. Volcan. Geoth. Res., 191(1-2), 46–59.

Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., and Prieto, G. A. (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise. Sci. Adv., 2(5), e1501538.

Mordret, A., Courbis, R., Brenguier, F., Chmiel, M., Garambois, S., Mao, S. J., Boué, P., Campman, X., Lecocq, T., .. Hollis, D. (2020). Noise-based ballistic wave passive seismic monitoring—Part 2: Surface waves. Geophys. J. Int., 221(1), 692–705.

Nakahara, H., and Emoto, K. (2017). Deriving sensitivity kernels of coda-wave travel times to velocity changes based on the three-dimensional single isotropic scattering model. Pure Appl. Geophys., 174(1), 327–337.

Nakahara, H., Wang, Q., Hobiger, M., and Hirose, T. (2020). Statistical characteristics of seismic velocity changes measured by seismic interferometry. (In review)222

Niu, F. L., Silver, P. G., Daley, T. M., Cheng, X., and Majer, E. L. (2008). Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature, 454(7201), 204–208.

Nur, A., and Simmons, G. (1969). The effect of saturation on velocity in low porosity rocks. Earth Planet. Sci. Lett., 7(2), 183–193.

Obermann, A., Planès, T., Larose, E., and Campillo, M. (2013a). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. J. Geophys. Res.: Solid Earth, 118(12), 6285–6294.

Obermann, A., Planès, T., Larose, E., Sens-Schönfelder, C., and Campillo, M. (2013b). Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. Geophys. J. Int., 194(1), 372–382.

Obermann, A., Froment, B., Campillo, M., Larose, E., Planès, T., Valette, B., Chen, J. H., and Liu, Q. Y. (2014). Seismic noise correlations to image structural and mechanical changes associated with the M w 7.9 2008 Wenchuan earthquake. J. Geophys. Res.: Solid Earth, 119(4), 3155–3168.

Obermann, A., Kraft, T., Larose, E., and Wiemer, S. (2015). Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). J. Geophys. Res.: Solid Earth, 120(6), 4301–4316.

Obermann, A., Planès, T., Larose, E., and Campillo, M. (2019). 4-D imaging of subsurface changes with coda waves: numerical studies of 3-D combined sensitivity kernels and applications to the Mw 7.9, 2008 Wenchuan earthquake. Pure Appl. Geophys., 176(3), 1243–1254.

O’Connell, R. J., and Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 79(35), 5412–5426.

Olivier, G., Brenguier, F., Campillo, M., Roux, P., Shapiro, N. M., and Lynch, R. (2015). Investigation of coseismic and postseismic processes using in situ measurements of seismic velocity variations in an underground mine. Geophys. Res. Lett., 42(21), 9261–9269.

Olivier, G., Brenguier, F., De Wit, T., and Lynch, R. (2017). Monitoring the stability of tailings dam walls with ambient seismic noise. Leading Edge, 36(4), 350a1–350a6.

Pacheco, C., and Snieder, R. (2005). Time-lapse travel time change of multiply scattered acoustic waves. J. Acoust. Soc. Am., 118(3), 1300–1310.

Pei, S. P., Niu, F. L., Ben-Zion, Y., Sun, Q., Liu, Y. B., Xue, X. T., Su, J. R., and Shao, Z. G. (2019). Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nat. Geosci., 12(5), 387–392.

Planès, T., Larose, E., Margerin, L., Rossetto, V., and Sens-Schönfelder, C. (2014). Decorrelation and phase-shift of coda waves induced by local changes: Multiple scattering approach and numerical validation. Waves Random Complex Media, 24(2), 99–125.

Planès, T., Mooney, M. A., Rittgers, J. B. R., Parekh, M. L., Behm, M., and Snieder, R. (2016). Time-lapse monitoring of internal erosion in earthen dams and levees using ambient seismic noise. Géotechnique, 66(4), 301–312.

Poli, P., Marguin, V., Wang, Q. Y., D’agostino, N., and Johnson, P. (2020). Seasonal and co-seismic velocity variation in the region of L’Aquila from single station measurements and implications for crustal rheology. J. Geophys. Res.: Solid Earth, 125, e2019JB019316.

Poupinet, G., Ellsworth, W. L., and Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. J. Geophys. Res.: Solid Earth, 89(B7), 5719–5731.

Reasenberg, P., and Aki, K. (1974). A precise, continuous measurement of seismic velocity for monitoring in situ stress. J. Geophys. Res., 79(2), 399–406.

Richter, T., Sens-Schönfelder, C., Kind, R., and Asch, G. (2014). Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry. J. Geophys. Res.: Solid Earth, 119(6), 4747–4765.

Sawazaki, K., Sato, H., Nakahara, H., and Nishimura, T. (2009). Time-lapse changes of seismic velocity in the shallow ground caused by strong ground motion shock of the 2000 Western-Tottori earthquake, Japan, as revealed from coda deconvolution analysis. Bull. Seismol. Soc. Am., 99(1), 352–366.

Sawazaki, K., Kimura, H., Shiomi, K., Uchida, N., Takagi, R., and Snieder, R. (2015). Depth-dependence of seismic velocity change associated with the 2011 Tohoku earthquake, Japan, revealed from repeating earthquake analysis and finite-difference wave propagation simulation. Geophys. J. Int., 201(2), 741–763.

Schimmel, M., Stutzmann, E., and Ventosa, S. (2018). Low-frequency ambient noise autocorrelations: Waveforms and normal modes. Seismol. Res. Lett., 89(4), 1488–1496.

Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am., 68(5), 1516–1521.

Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G., and Collettini, C. (2016). Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nat. Geosci., 9(9), 695–700.

Sens-Schönfelder, C., and Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett., 33(21), L21302.

Sens-Schönfelder, C., and Larose, E. (2010). Lunar noise correlation, imaging and monitoring. Earthq. Sci., 23(5), 519–530.

Sens-Schönfelder, C., Pomponi, E., and Peltier, A. (2014). Dynamics of Piton de la Fournaise volcano observed by passive image interferometry with multiple references. J. Volcan. Geoth. Res., 276, 32–45.

Sens-Schönfelder, C., Snieder, R., and Li, X. (2019). A model for nonlinear elasticity in rocks based on friction of internal interfaces and contact aging. Geophys. J. Int., 216(1), 319–331.

Shapiro, N. M., and Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31(7), L07614.

Silver, P. G., Daley, T. M., Niu, F. L., and Majer, E. L. (2007). Active source monitoring of cross-well seismic travel time for stress-induced changes. Bull. Seismol. Soc. Am., 97(1B), 281–293.

Sleep, N. H. (2015). Shallow S-wave well logs as an indicator of past strong shaking from earthquakes on the Newport–Inglewood fault. Bull. Seismol. Soc. Am., 105(5), 2696–2703.

Snieder, R., Grêt, A., Douma, H., and Scales, J. (2002). Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563), 2253–2255.

Takano, T., Nishimura, T., Nakahara, H., Ohta, Y., and Tanaka, S. (2014). Seismic velocity changes caused by the Earth tide: Ambient noise correlation analyses of small-array data. Geophys. Res. Lett., 41(17), 6131–6136.

Takano, T., Brenguier, F., Campillo, M., Peltier, A., and Nishimura, T. (2020). Noise-based passive ballistic wave seismic monitoring on an active volcano. Geophys. J. Int., 220(1), 501–507.

Tanimoto, T., Eitzel, M., and Yano, T. (2008). The noise cross-correlation approach for Apollo 17 LSPE data: Diurnal change in seismic parameters in shallow lunar crust. J. Geophys. Res.: Planets, 113(E8), E08011.

Taylor, G., and Hillers, G. (2020). Estimating temporal changes in seismic velocity using a Markov chain Monte Carlo approach. Geophys. J. Int., 220(3), 1791–1803.

Tsai, V. C. (2011). A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. J. Geophys. Res.: Solid Earth, 116(B4), B04404.

Wang, B. S., Yang, W., Wang, W. T., Yang, J., Li, X. B., and Ye, B. (2020). Diurnal and semidiurnal P- and S-wave velocity changes measured using an airgun source. J. Geophys. Res.: Solid Earth, 125(1), e2019JB018218.

Wang, Q. Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T., and Aoki, Y. (2017). Seasonal crustal seismic velocity changes throughout Japan. J. Geophys. Res.: Solid Earth, 122(10), 7987–8002.

Wang, Q. Y., Campillo, M., Brenguier, F., Lecointre, A., Takeda, T., and Hashima, A. (2019). Evidence of changes of seismic properties in the entire crust beneath Japan after the M w 9.0, 2011 Tohoku-oki Earthquake. J. Geophys. Res.: Solid Earth, 124(8), 8924–8941.

Weaver, R. L., Hadziioannou, C., Larose, E., and Campillo, M. (2011). On the precision of noise correlation interferometry. Geophys. J. Int., 185(3), 1384–1392.

Wegler, U., and Sens-Schönfelder, C. (2007). Fault zone monitoring with passive image interferometry. Geophys. J. Int., 168(3), 1029–1033.

Xu, Z. J., and Song, X. D. (2009). Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation. Proc. Natl. Acad. Sci. USA, 106(34), 14207–14212.

Yamamura, K., Sano, O., Utada, H., Takei, Y., Nakao, S., and Fukao, Y. (2003). Long-term observation of in situ seismic velocity and attenuation. J. Geophys. Res., 108(B6), 2317.

Yang, W., Wang, B. S., Yuan, S. Y., and Ge, H. K. (2018). Temporal variation of seismic-wave velocity associated with groundwater level observed by a downhole airgun near the Xiaojiang fault zone. Seismol. Res. Lett., 89(3), 1014–1022.

Yao, H. J., and van der Hilst, R. D. (2009). Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys. J. Int., 179(2), 1113–1132.

Zhan, Z. W., Tsai, V. C., and Clayton, R. W. (2013). Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophysi. J. Int., 194(3), 1574–1581.

Zhang, Y. X., Planès, T., Larose, E., Obermann, A., Rospars, C., and Moreau, G. (2016). Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam. J. Acoust. Soc. Am., 139(4), 1691–1701.

Zhao, P. P., Chen, J. H., Campillo, M., Liu, Q. Y., Li, Y., Li, S. C., Guo, B., Wang, J., and Qi S. H. (2012). Crustal velocity changes associated with the Wenchuan M8.0 earthquake by auto-correlation function analysis of seismic ambient noise. Chinese J. Geophys. (in Chinese) , 55(1), 137–145.


ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026


Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003


Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031


Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021


Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028


Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050


Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016


ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011


Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021


Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective

Qing-Yu Wang, HuaJian Yao