Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Li, X. Z., Rong, Z. J., Gao, J. W., Wei, Y., Shi, Z., Yu, T., and Wan, W. X. (2020). A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover. Earth Planet. Phys., 4(4), 1–9doi: 10.26464/epp2020045

doi: 10.26464/epp2020045


A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China


Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


China University of Geosciences, Wuhan 430074, China

Corresponding author: ZhaoJin Rong,

Received Date: 2020-03-03
Web Publishing Date: 2020-04-01

Unlike Earth, Mars lacks a global dipolar magnetic field but is dominated by patches of a remnant crustal magnetic field. In 2021, the Chinese Mars Rover will land on the surface of Mars and measure the surface magnetic field along a moving path within the possible landing region of 20°W–50°W, 20°N–30°N. One scientific target of the Rover is to monitor the variation in surface remnant magnetic fields and reveal the source of the ionospheric current. An accurate local crustal field model is thus considered necessary as a field reference. Here we establish a local crust field model for the candidate landing site based on the joint magnetic field data set from Mars Global Explorer (MGS) and Mars Atmosphere and Volatile Evolution (MAVEN) data combined. The model is composed of 1,296 dipoles, which are set on three layers but at different buried depths. The application of the dipole model to the joint data set allowed us to calculate the optimal parameters of their dipoles. The calculated results demonstrate that our model has less fitting error than two other state-of-the art global crustal field models, which would indicate a more reasonable assessment of the surface crustal field from our model.

Key words: Mars, remnant crustal field, crustal field model, dipole sources, Chinese Mars mission

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Mitchell, D., … Ness, N. F. (1998). Magnetic field and plasma observations at mars: initial results of the mars global surveyor mission. Science, 279(5357), 1676–1680.

Albee, A. L., Arvidson, R. E., Palluconi, F., and Thorpe, T. (2001). Overview of the Mars Global Surveyor mission. J. Geophys. Res. Planets, 106(E10), 23291–23316.

Arkani-Hamed, J. (2005). Magnetic crust of Mars. J. Geophys. Res. Planets, 110(E8), E08005.

Arkani-Hamed, J. (2007). Magnetization of Martian lower crust: Revisited. J. Geophys. Res. Planets, 112(E5), E05008.

Cain, J. C., Ferguson, B. B., and Mozzoni, D. (2003). An n = 90 internal potential function of the Martian crustal magnetic field. J. Geophys. Res. Planets, 108(E2), 5008.

Chiao, L. Y., Lin, J. R., and Gung, Y. C. (2006). Crustal magnetization equivalent source model of Mars constructed from a hierarchical multiresolution inversion of the Mars Global Surveyor data. J. Geophys. Res. Planets, 111(E12), E12010.

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1), 257–291.

Fan, K., Fraenz, M., Wei, Y., Han, Q. Q., Dubinin, E., Cui, J., Chai, L. H., Rong, Z. J., Zhong, J., … Connerney, J. E. P. (2019). Reduced atmospheric ion escape above Martian crustal magnetic fields. Geophys. Res. Lett., 46(21), 11764–11772.

Geng, Y., Zhou, J. S., Li, S., Fu, Z. L., Meng, L. Z., Liu, J. J., and Wang, H. P. (2018). A brief introduction of the first mars exploration mission in China. J. Deep Space Explor. (in Chinese) , 5(5), 399–405.

Han, X., Fraenz, M., Dubinin, E., Wei, Y., Andrews, D. J., Wan, W., He, M., Rong, Z. J., Chai, L., … Barabash, S. (2014). Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements. Geophys. Res. Lett., 41(23), 8221–8227.

Han, Q. Q., Fan, K., Cui, J., Wei, Y., Fraenz, M., Dubinin, E., Chai, L. H., Rong, Z. J., Wan, W. X., … Connerney, J. E. P. (2019). The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations. J. Geophys. Res.: Space Phys., 124(10), 8015–8022.

Hestenes, M. R., and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 49(6), 409–436.

Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., … Zurek, R. (2015). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev., 195(1), 3–48.

Johnson, C. L., Mittelholz, A., Langlais, B., Lognonné, P., Pike, W. T., Joy, S. P., Russell, C. T., Yu, Y. N., Fillingim, M., … Banerdt, W. B. (2019). First results from the insight fluxgate magnetometer: Constraints on Mars’ crustal magnetic field at the INSIGHT landing site. In 50th Lunar and Planetary Science Conference 2019. The Woodlands, Texas: LPI.222

Johnson, C. L., Mittelholz, A., Langlais, B., Russell, C. T., Ansan, V., Banfield, D., Chi, P. J., Fillingim, M. O., Forget, F., … Banerdt, W. B. (2020). Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nat. Geosci., 13(3), 199–204.

Langlais, B., Purucker, M. E., and Mandea, M. (2004). Crustal magnetic field of Mars. J. Geophys. Res. Planets, 109(E2), E02008.

Langlais, B., Thébault, E., Houliez, A., Purucker, M. E., and Lillis, R. J. (2019). A new model of the crustal magnetic field of Mars using MGS and MAVEN. J. Geophys. Res. Planets, 124(6), 1542–1569.

Li, C. L., Liu, J. J., Geng, Y., Cao, J. B., Zhang, T. L., Fang, G. Y., Yang, J. F., Shu, R., Zou, Y. L.,.. Ouyang, Z. Y. (2018). Scientific objectives and payload configuration of China’s first Mars exploration mission. J. Deep Space Explor. (in Chinese) , 5(5), 406–413.

Lillis, R. J., Frey, H. V., Manga, M., Mitchell, D. L., Lin, R. P., Acuña, M. H., and Bougher, S. W. (2008). An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the Martian dynamo. Icarus, 194(2), 575–596.

Ma, Y. J., Fang, X. H., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., Brain, D. A., and Dong, C. F. (2014). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophys. Res. Lett., 41(19), 6563–6569.

Mayhew, M. A. (1979). Inversion of satellite magnetic anomaly data. J. Geophys., 45(2), 119–128.

Mittelholz, A., Johnson, C. L., and Morschhauser, A. (2018a). A new magnetic field activity proxy for Mars from MAVEN data. Geophys. Res. Lett., 45(12), 5899–5907.

Mittelholz, A., Morschhauser, A., Johnson, C. L., Langlais, B., Lillis, R. J., Vervelidou, F., and Weiss, B. P. (2018b). The Mars 2020 candidate landing sites: A magnetic field perspective. Earth Space Sci., 5(9), 410–424.

Moore, K. M., and Bloxham, J. (2017). The construction of sparse models of Mars's crustal magnetic field. J. Geophys. Res. Planets, 122(7), 1443–1457.

Morschhauser, A., Lesur, V., and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res. Planets, 119(6), 1162–1188.

Mustard, J., Adler, M., Allwood, A., Bass, D., Beaty, D., Bell, J., et al. (2013). Report of the Mars 2020 science definition team. Mars Exploration Program Analysis Group (MEPAG), Cl, 155-205.

Němec, F., Morgan, D. D., Gurnett, D. A., and Brain, D. A. (2011). Areas of enhanced ionization in the deep nightside ionosphere of Mars. J. Geophys. Res. Planets, 116(E6), E06006.

Oliveira, J. S., Langlais, B., Pais, M. A., and Amit, H. (2015). A modified Equivalent Source Dipole method to model partially distributed magnetic field measurements, with application to Mercury. J. Geophys. Res. Planets, 120(6), 1075–1094.

Plattner, A., and Simons, F. J. (2015). High-resolution local magnetic field models for the Martian South Pole from Mars Global Surveyor data. J. Geophys. Res. Planets, 120(9), 1543–1566.

Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and Acuña, M. (2000). An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett., 27(16), 2449–2452.

Purucker, M. E., Sabaka, T. J., and Langel, R. A. (1996). Conjugate gradient analysis: A new tool for studying satellite magnetic data sets. Geophys. Res. Lett., 23(5), 507–510.

Purucker, M. E. (2008). A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations. Icarus, 197(1), 19–23.

Russell, C. T., Joy, S., Yu, Y., Rowe, K., Johnson, C., Mittelholz, A., Langlais, B., Chi, P. J., Fillingim, M., …Banerdt, B. (2019). The insight magnetic field measurements: preliminary results. In 50th Lunar and Planetary Science Conference 2019. The Woodlands, Texas: LPI.222

Smith, D. E., and Zuber, M. T. (2002). The crustal thickness of Mars: Accuracy and resolution. In 33rd Annual Lunar and Planetary Science Conference. Houston, Texas: NASA.222

Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006). Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet. Space Sci., 54(4), 357–369.

Wei, Y., Yao, Z. H., and Wan, W. X. (2018). China’s roadmap for planetary exploration. Nat. Astron., 2(5), 346–348.

Whaler, K. A., and Purucker, M. E. (2005). A spatially continuous magnetization model for Mars. J. Geophys. Res. Planets, 110(E9), E09001.

Zhao, L., Du, A. M., Qiao, D. H., Sun, S. Q., Zhang, Y., Ou, J. M., Guo, Z. F., Li, Z., Feng, X., … Li, F. (2018). The ROVER fluxgate magnetometer. J. Deep Space Explor. (in Chinese) , 5(5), 472–477.

Zuber, M. T. (2001). The crust and mantle of Mars. Nature, 412(6843), 220–227.


YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008


JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009


Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025


XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics. doi: 10.26464/epp2020035


MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029


XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038


MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010


Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, and Jun Cui, 0: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062


JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics. doi: 10.26464/epp2020038


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028


Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan