Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ren, Z. P., Wan, W. X., Xiong, J. G., and Li, X. (2020). Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state. Earth Planet. Phys., 4(5), 429–435doi: 10.26464/epp2020041

2020, 4(5): 429-435. doi: 10.26464/epp2020041

SPACE PHYSICS: IONOSPHERIC PHYSICS

Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China

3. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4. 

College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China

5. 

School of Space and Environment, Beihang University, Beijing 100083, China

6. 

Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100083, China

Corresponding author: ZhiPeng Ren, zpren@mail.iggcas.ac.cn

Received Date: 2020-03-09
Web Publishing Date: 2020-09-25

Through respectively adding June tide and December tide at the low boundary of the GCITEM-IGGCAS model (Global Coupled Ionosphere–Thermosphere–Electrodynamics Model, Institute of Geology and Geophysics, Chinese Academy of Sciences), we simulate the influence of atmospheric tide on the annual anomalies of the zonal mean state of the ionospheric electron density, and report that the tidal influence varies with latitude, altitude, and solar activity level. Compared with the density driven by the December tide, the June tide mainly increases lower ionospheric electron densities (below roughly the height of 200 km), and decreases electron densities in the higher ionosphere (above the height of 200 km). In the low-latitude ionosphere, tides affect the equatorial ionization anomaly structure (EIA) in the relative difference of electron density, which suggests that tides affect the equatorial vertical E×B plasma drifts. Although the tide-driven annual anomalies do not vary significantly with the solar flux level in the lower ionosphere, in the higher ionosphere the annual anomalies generally decrease with solar activity.

Key words: ionospheric annual anomalies, atmospheric tide, ionosphere–atmosphere coupling

Dang, T., Wang, W. B., Burns, A., Dou, X. K., Wan, W. X., and Lei, J. H. (2017). Simulations of the ionospheric annual asymmetry: Sun–Earth distance effect. J. Geophys. Res. Space Phys., 122(6), 6727–6736. https://doi.org/10.1002/2017JA024188

Forbes, J. M., Roble, R. G., and Fesen, C. G. (1993). Acceleration, heating, and compositional mixing of the thermosphere due to upward propagating tides. J. Geophys. Res. Space Phys., 98(A1), 311–321. https://doi.org/10.1029/92JA00442

Forbes, J. M., Zhang, X., Palo, S., Russell, J., Mertens, C. J., and Mlynczak, M. (2008). Tidal variability in the ionospheric dynamo region. J. Geophys. Res. Space Phys., 113(A2), A02310. https://doi.org/10.1029/2007JA012737

Jin, H., Miyoshi, Y., Fujiwara, H., and Shinagawa, H. (2008). Electrodynamics of the formation of ionospheric wave number4 longitudinal structure. J. Geophys. Res. Space Phys., 113, A09307. https://doi.org/10.1029/2008JA013301

Jones, M. Jr., Forbes, J. M., Hagan, M. E., and Maute, A. (2014). Impacts of vertically propagating tides on the mean state of the ionosphere–thermosphere system. J. Geophys. Res. Space Phys., 119(3), 2197–2213. https://doi.org/10.1002/2013JA019744

Lei, J. H., Wang, W. B., Burns, A. G., Luan, X. L., and Dou, X. K. (2016). Can atomic oxygen production explain the ionospheric annual asymmetry?. J. Geophys. Res. Space Phys., 121(7), 7238–7244. https://doi.org/10.1002/2016JA022648

Lindzen, R. S. (1967). Thermally driven diurnal tide in the atmosphere. Quart. J. Roy. Meteor. Soc., 93(395), 18–42. https://doi.org/10.1002/qj.49709339503

Liu, L. B., Zhao, B. Q., Wan, W. X., Venkartraman, S., Zhang, M. L., and Yue, X. (2007). Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes. J. Geophys. Res. Space Phys., 112(A7), A07303. https://doi.org/10.1029/2007JA012283

Mendillo, M., Huang, C. L., Pi, X. Q., Rishbeth, H., and Meier, R. (2005). The global ionospheric asymmetry in total electron content. J. Atmos. Sol. Terr. Phys., 67(15), 1377–1387. https://doi.org/10.1016/j.jastp.2005.06.021

Mikhailov, A. V., and Perrone, L. (2011). On the mechanism of seasonal and solar cycle NmF2 variations: A quantitative estimate of the main parameters contribution using incoherent scatter radar observations. J. Geophys. Res. Space Phys., 116(A3), A03319. https://doi.org/10.1029/2010JA016122

Mikhailov, A. V., and Perrone, L. (2015). The annual asymmetry in the F2 layer during deep solar minimum (2008-2009): December anomaly. J. Geophys. Res. Space Phys, 120(2), 1341–1354. https://doi.org/10.1002/2014JA020929

Mukhtarov, P., Pancheva, D., and Andonov, B. (2009). Global structure and seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. J. Geophys. Res. Space Phys., 114(A2), A02309. https://doi.org/10.1029/2008JA013759

Ren, Z. P., Wan, W. X., Wei, Y., Liu, L. B., and Yu, T. (2008). A theoretical model for mid- and low-latitude ionospheric electric fields in realistic geomagnetic fields. Chin. Sci. Bull., 53(24), 3883–3890. https://doi.org/10.1007/s11434-008-0404-4

Ren, Z. P., Wan, W. X., and Liu, L. B. (2009). GCITEM-IGGCAS: A new global coupled ionosphere–-thermosphere–electrodynamics model. J. Atmos. Sol. Terr. Phys., 71(17-18), 2064–2076. https://doi.org/10.1016/j.jastp.2009.09.015

Ren, Z. P., Wan, W. X., Xiong, J. G., and Liu, L. B. (2010). Simulated wave number 4 structure in equatorial F-region vertical plasma drifts. J. Geophys. Res. Space Phys., 115(A5), A05301. https://doi.org/10.1029/2009JA014746

Ren, Z. P., Wan, W. X., Liu, L. B., and Xiong, J. G. (2011). Simulated longitudinal variations in the lower thermospheric nitric oxide induced by nonmigrating tides. J. Geophys. Res. Space Phys., 116(A4), A04301. https://doi.org/10.1029/2010JA016131

Ren, Z. P., Wan, W. X., Liu, L. B., and Le, H. J. (2012a). TIME3D-IGGCAS: A new three-dimension mid- and low-latitude theoretical ionospheric model in realistic geomagnetic fields. J. Atmos. Sol. Terr. Phys., 80, 258–266. https://doi.org/10.1016/j.jastp.2012.02.001

Ren, Z. P., Wan, W. X., Liu, L. B., Le, H. J., and He, M. S. (2012b). Simulated midlatitude summer nighttime anomaly in realistic geomagnetic fields. J. Geophys. Res. Space Phys., 117(A3), A03323. https://doi.org/10.1029/2011JA017010

Ren, Z. P., Wan, W. X., Xiong, J. G., and Liu, L. B. (2014). Influence of DE3 tide on the equinoctial asymmetry of the zonal mean ionospheric electron density. Earth Planets Space, 66(1), 117. https://doi.org/10.1186/1880-5981-66-117

Richmond, A. D. (1995). Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr., 47(2), 191–212. https://doi.org/10.5636/jgg.47.191

Rishbeth, H., and Müller-Wodarg, I. C. F. (2006). Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer. Ann. Geophys., 24(12), 3293–3311. https://doi.org/10.5194/angeo-24-3293-2006

Rishbeth, H. (2007). Thermospheric targets. Eos, 88(17), 189–193. https://doi.org/10.1029/2007EO170002

Roble, R. G., Ridley, E. C., and Dickinson, R. E. (1987). On the global mean structure of the thermosphere. J. Geophys. Res. Space Phys., 92(A8), 8745–8758. https://doi.org/10.1029/JA092iA08p08745

Roble, R. G. (1995). Energetics of the mesosphere and thermosphere. In R. M. Johnson, et al. (Eds.), The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (pp. 1–21). Washington: AGU. https://doi.org/10.1029/GM087p0001222

Sai Gowtam, V., and Tulasi Ram, T. (2017). Ionospheric annual anomaly—New insights to the physical mechanisms. J. Geophys. Res. Space Phys., 122(8), 8816–8830. https://doi.org/10.1002/2017JA024170

Su, Y. Z., Bailey, G. J., and Oyama, K. I. (1998). Annual and seasonal variations in the low-latitude topside ionosphere. Ann. Geophys., 16(8), 974–985. https://doi.org/10.1007/s00585-998-0974-0

Wan, W., Ren, Z., Ding, F., Xiong, J., Liu, L., Ning, B., Zhao, B., Li, G., and Zhang, M. L. (2012). A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere. J. Atmos. Sol. Terr. Phys., 90-91, 52–60. https://doi.org/10.1016/j.jastp.2012.04.011

Zeng, Z., Burns, A., Wang, W. B., Lei, J. H., Solomon, S., Syndergaard, S., Qian, L. Y., and Kuo, Y. H. (2008). Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM. J. Geophys. Res. Space Phys., 113(A7), A07305. https://doi.org/10.1029/2007JA012897

Zhao, B., Wan, W., Liu, L., Mao, T., Ren, Z., Wang, M., and Christensen, A. B. (2007). Features of annual and semiannual variations derived from the global ionospheric maps of total electron content. Ann. Geophys., 25(12), 2513–2527. https://doi.org/10.5194/angeo-25-2513-2007

[1]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[2]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[3]

ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics, 4, 472-478. doi: 10.26464/epp2020046

[4]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[5]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[6]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[7]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[8]

TianJun Zhou, 2019: Toward better watching of the deep atmosphere over East Asia, Earth and Planetary Physics, 3, 85-86. doi: 10.26464/epp2019010

[9]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[10]

Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047

[11]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

[12]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062

[13]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[14]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[15]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[16]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[17]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[18]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[19]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[20]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics. doi: 10.26464/epp2020059

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state

ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li