Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wang, J. Z., Zhu, Q., Gu, X. D., Fu, S., Guo, J. G., Zhang, X. X., Yi, J., Guo, Y. J., Ni, B. B., and Xiang, Z. (2020). An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements. Earth Planet. Phys., 4(3), 246–265doi: 10.26464/epp2020034

2020, 4(3): 246-265. doi: 10.26464/epp2020034

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430079, China

2. 

Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081, China

Corresponding author: XuDong Gu, guxudong@whu.edu.cnSong Fu, fusion@whu.edu.cn

Received Date: 2020-01-20
Web Publishing Date: 2020-05-01

Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model’s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensity, including substorm dependence and the MLT asymmetry. Our results therefore provide a useful analytic model that can be readily employed in future simulations of global radiation belt electron dynamics under the impact of plasmaspheric hiss waves in geospace.

Key words: hiss, Van Allen Probes, global model

Albert, J. M. (1994). Quasi-linear pitch angle diffusion coefficients: Retaining high harmonics. Journal of Geophysical Research, 99(A12), 23,741–23,745. https://doi.org/10.1029/94JA02345

Abel, B., and Thorne, R. M. (1998a). Electron scattering loss in Earth's inner magnetosphere: 1. dominant physical processes. J. Geophys. Res. Space Phys., 103(A2), 2385–2396. https://doi.org/10.1029/97JA02919

Abel, B., and Thorne, R. M. (1998b). Electron scattering loss in Earth's inner magnetosphere: 2. sensitivity to model parameters. J. Geophys. Res. Space Phys., 103(A2), 2397–2407. https://doi.org/10.1029/97JA02920

Agapitov, O., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Mourenas, D., Breuillard, H., Balikhin, M., and Rolland, G. (2013). Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements. J. Geophys. Res. Space Phys., 118(6), 3407–3420. https://doi.org/10.1002/jgra.50312

Agapitov, O. V., Artemyev, A. V., Mourenas, D., Kasahara, Y., and Krasnoselskikh, V. (2014). Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves. J. Geophys. Res. Space Phys., 119(4), 2876–2893. https://doi.org/10.1002/2014JA019886

Bortnik, J., Thorne, R. M., and Meredith, N. P. (2008). The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature, 452(7183), 62–66. https://doi.org/10.1038/nature06741

He, F., Zhang, X. X., Chen, B., and Fok, M. C. (2011). Reconstruction of the plasmasphere from Moon-based EUV images. J. Geophys. Res. Space Phys., 116(A11), A11203. https://doi.org/10.1029/2010JA016364

He, F., Zhang, X. X., Chen, B., Fok, M. C., and Zou, Y. L. (2013). Moon-based EUV imaging of the Earth’s plasmasphere: Model simulations. J. Geophys. Res. Space Phys., 118(11), 7085–7103. https://doi.org/10.1002/2013JA018962

He, F., Zhang, X. X., Chen, B., Fok, M. C., and Nakano, S. (2016). Determination of the Earth’s plasmapause location from the CE-3 EUVC images. J. Geophys. Res. Space Phys., 121(1), 296–304. https://doi.org/10.1002/2015JA021863

He, F., Zhang, X. X., Lin, R. L., Fok, M. C., Katus, R. M., Liemohn, M. W., Gallagher, D. L., and Nakano, S. (2017). A new solar wind-driven global dynamic plasmapause model: 2. Model and validation. J. Geophys. Res. Space Phys., 122(7), 7172–7187. https://doi.org/10.1002/2017JA023913

Hua, M., Ni, B. B., Li, W., Gu, X. D., Fu, S., Shi, R., Xiang, Z., Cao, X., Zhang, W. X., and Guo, Y. J. (2019). Evolution of radiation belt electron pitch angle distribution due to combined scattering by plasmaspheric hiss and magnetosonic waves. Geophys. Res. Lett., 46(6), 3033–3042. https://doi.org/10.1029/2018GL081828

Katus, R. M., Gallagher, D. L., Liemohn, M. W., Keesee, A. M., and Sarno-Smith, L. K. (2015). Statistical storm time examination of MLT-dependent plasmapause location derived from IMAGE EUV. J. Geophys. Res. Space Phys, 120(7), 5545–5559. https://doi.org/10.1002/2015JA021225

Kim, K. C., Lee, D. Y., and Shprits, Y. (2015). Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution. J. Geophys. Res. Space Phys., 120(2), 1153–1167. https://doi.org/10.1002/2014JA020687

Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1–4), 127–181. https://doi.org/10.1007/s11214-013-9993-6

Li, L. Y., Cao, J. B., and Zhou, G. C. (2008). Whistler-mode waves modify the high-energy electron slot region and the outer radiation belt. Chinese J. Geophys. (in Chinese) , 51(2), 316–324. https://doi.org/10.3321/j.issn:0001-5733.2008.02.004

Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., … Thaller, S. A. (2013). An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons. Geophys. Res. Lett., 40(15), 3798–3803. https://doi.org/10.1002/grl.50787

Li, W., Chen, L., Bortnik, J., Thorne, R. M., Angelopoulos, V., Kletzing, C. A., Kurth, W. S., and Hospodarsky, G. B. (2015a). First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation. Geophys. Res. Lett., 42(2), 241–248. https://doi.org/10.1002/2014GL062832

Li, W., Ma, Q., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., and Nishimura, Y. (2015b). Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics. J. Geophys. Res. Space Phys., 120(5), 3393–3405. https://doi.org/10.1002/2015JA021048

Lyons, L. R., Thorne, R. M., and Kennel, C. F. (1972). Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res., 77(19), 3455–3474. https://doi.org/10.1029/JA077i019p03455

Lyons, L. R., and Thorne, R. M. (1973). Equilibrium structure of radiation belt electrons. J. Geophys. Res., 78(13), 2142–2149. https://doi.org/10.1029/JA078i013p02142

Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., and Anderson, R. R. (2004). Substorm dependence of plasmaspheric hiss. J. Geophys. Res. Space Phys., 109(A6), A06209. https://doi.org/10.1029/2004JA010387

Meredith, N. P., Horne, R. B., Clilverd, M. A., Horsfall, D., Thorne, R. M., and Anderson, R. R. (2006a). Origins of plasmaspheric hiss. J. Geophys. Res. Space Phys., 111(A9), A09217. https://doi.org/10.1029/2006JA011707

Meredith, N. P., Horne, R. B., Glauert, S. A., Thorne, R. M., Summers, D., Albert, J. M., and Anderson, R. R. (2006b). Energetic outer zone electron loss timescales during low geomagnetic activity. J. Geophys. Res. Space Phys., 111(A5), A05212. https://doi.org/10.1029/2005JA011516

Meredith, N. P., Horne, R. B., Glauert, S. A., and Anderson, R. R. (2007). Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers. J. Geophys. Res. Space Phys., 112(A8), A08214. https://doi.org/10.1029/2007JA012413

Mosier, S. R., Kaiser, M. L., and Brown, L. W. (1973). Observations of noise bands associated with the upper hybrid resonance by the IMP 6 radio astronomy experiment. J. Geophys. Res., 78(10), 1673–1679. https://doi.org/10.1029/JA078i010p01673

Ni, B. B., Bortnik, J., Thorne, R. M., Ma, Q. L., and Chen, L. J. (2013). Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss. J. Geophys. Res. Space Phys., 118(12), 7740–7751. https://doi.org/10.1002/2013JA019260

Ni, B. B., Li, W., Thorne, R. M., Bortnik, J., Ma, Q. L., Chen, L. J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., … Claudepierre, S. G. (2014). Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophys. Res. Lett., 41(6), 1854–1861. https://doi.org/10.1002/2014GL059389

Ni, B. B., Hua, M., Zhou, R. X., Yi, J., and Fu, S. (2017). Competition between outer zone electron scattering by plasmaspheric hiss and magnetosonic waves. Geophys. Res. Lett., 44(8), 3465–3474. https://doi.org/10.1002/2017GL072989

Ni, B. B., Huang, H., Zhang, W. X., Gu, X. D., Zhao, H., Li, X. L., Baker, D., Fu, S., Xiang, Z., and Cao, X. (2019). Parametric sensitivity of the formation of reversed electron energy spectrum caused by plasmaspheric hiss. Geophys. Res. Lett., 46(8), 4134–4143. https://doi.org/10.1029/2019gl082032

Orlova, K., Spasojevic, M., and Shprits, Y. (2014). Activity-dependent global model of electron loss inside the plasmasphere. Geophys. Res. Lett., 41(11), 3744–3751. https://doi.org/10.1002/2014GL060100

Santolík, O., Parrot, M., Storey, L. R. O., Pickett, J. S., and Gurnett, D. A. (2001). Propagation analysis of plasmaspheric hiss using Polar PWI measurements. Geophys. Res. Lett., 28(6), 1127–1130. https://doi.org/10.1029/2000GL012239

Shi, R., Li, W., Ma, Q. L., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., … Claudepierre, S. G. (2017). Systematic evaluation of low-frequency hiss and energetic electron injections. J. Geophys. Res. Space Phys., 122(10), 10263–10274. https://doi.org/10.1002/2017JA024571

Smith, E. J., Frandsen, A. M. A., Tsurutani, B. T., Thorne, R. M., and Chan, K. W. (1974). Plasmaspheric hiss intensity variations during magnetic storms. J. Geophys. Res., 79(16), 2507–2510. https://doi.org/10.1029/JA079i016p02507

Spasojevic, M., Shprits, Y. Y., and Orlova, K. (2015). Global empirical models of plasmaspheric hiss using Van Allen Probes. J. Geophys. Res. Space Phys., 120(12), 10370–10383. https://doi.org/10.1002/2015JA021803

Summers, D., Ni, B. B., and Meredith, N. P. (2007a). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J. Geophys. Res. Space Phys., 112(A4), A04206. https://doi.org/10.1029/2006JA011801

Summers, D., Ni, B. B., and Meredith, N. P. (2007b). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res. Space Phys., 112(A4), A04207. https://doi.org/10.1029/2006JA011993

Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E. (1973). Plasmaspheric hiss. J. Geophys. Res. Space Phys., 78(10), 1581–1596. https://doi.org/10.1029/JA078i010p01581

Thorne, R. M., Smith, E. J., Fiske, K. J., and Church, S. R. (1974). Intensity variation of ELF hiss and chorus during isolated substorms. Geophys. Res. Lett., 1(5), 193–196. https://doi.org/10.1029/GL001i005p00193

Thorne, R. M., Church, S. R., and Gorney, D. J. (1979). On the origin of plasmaspheric hiss: The importance of wave propagation and the plasmapause. J. Geophys. Res. Space Phys., 84(A9), 5241–5247. https://doi.org/10.1029/JA084iA09p05241

Tsurutani, B. T., Falkowski, B. J., Pickett, J. S., Santolik, O., and Lakhina, G. S. (2015). Plasmaspheric hiss properties: Observations from Polar. J. Geophys. Res. Space Phys., 120(1), 414–431. https://doi.org/10.1002/2014JA020518

Verbanac, G., Pierrard, V., Bandić, M., Darrouzet, F., Rauch, J. L., and Décréau, P. (2015). The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011. Ann. Geophys., 33(10), 1271–1283. https://doi.org/10.5194/angeo-33-1271-2015

Xiang, Z., Tan, J. Q., Ni, B. B., Gu, X. D., Cao, X., Zou, Z. Y., Zhou, C., Fu, S., Shi, R., … Wang, H. (2017). A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations. Acta Phys. Sin. (in Chinese) , 66(3), 039401. https://doi.org/10.7498/aps.66.039401

Yu, J., Li, L. Y., Cao, J. B., Chen, L., Wang, J., and Yang, J. (2017). Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models. J. Geophys. Res. Space Phys., 122(4), 4156–4167. https://doi.org/10.1002/2016JA023372

Zhang, X. X., He, F., Lin, R. L., Fok, M. C., Katus, R. M., Liemohn, M. W., Gallagher, D. L., and Nakano, S. (2017a). A new solar wind-driven global dynamic plasmapause model: 1. Database and statistics. J. Geophys. Res. Space Phys., 122(7), 7153–7171. https://doi.org/10.1002/2017JA023912

Zhang, X. X., He, F., Chen, B., Shen, C., and Wang, H. N. (2017b). Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera. Earth Planet. Phys., 1(1), 35–43. https://doi.org/10.26464/epp2017005

Zhao, H., Ni, B., Li, X., Baker, D. N., Johnston, W. R., Zhang, W., Xiang, Z., Gu, X., Jaynes, A. N., … Boyd, A. J. (2019). Plasmaspheric hiss waves generate a reversed energy spectrum of radiation belt electrons. Nat. Phys., 15(4), 367–372. https://doi.org/10.1038/s41567-018-0391-6

[1]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[2]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[3]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[4]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[5]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[6]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[7]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[8]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[9]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[10]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang