Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Cai, Y. Z., Xiao, Z. Y., Ding, C. Y., and Cui, J. (2020). Fine debris flows formed by the Orientale basin. Earth Planet. Phys., 4(3), 212–222doi: 10.26464/epp2020027

2020, 4(3): 212-222. doi: 10.26464/epp2020027


Fine debris flows formed by the Orientale basin


Planetary Environmental and Astrobiological Laboratory, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519000, China


State Key Laboratory of Lunar and Planetary Sciences, Space Science Institute, Macau University of Science and Technology, Macau 999078, China


Center for Excellence in Comparative Planetology, Chinese Academy of Science, Hefei 230026, China


Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

Corresponding author: ZhiYong Xiao,

Received Date: 2020-01-24
Web Publishing Date: 2020-05-01

The prototype for investigations of formation mechanisms and related geological effects of large impact basins on planetary bodies has been the Orientale basin on the Moon. Its widespread secondaries, light plains, and near-rim melt flows have been well mapped in previous studies. Flow features are also widely associated with secondaries on planetary bodies, but their physical properties are not well constrained. The nature of flow features associated with large impact basins are critically important to understand the emplacement process of basin ejecta, which is one of the most fundamental processes in shaping the shallow crusts of planetary bodies. Here we use multisource remote sensing data to constrain the physical properties of flow features formed by the secondaries of the Orientale basin. The results suggest that such flows are dominated by centimeter-scale fine debris fines; larger boulders are not abundant. The shattering of target materials during the excavation of the Orientale basin, landing impact of ejecta that formed the secondaries, and grain comminution within the flows have substantially reduced particle sizes, forming the fine flows. The discovery of global-wide fine debris flows formed by large impact basins has profound implications to the interpretation of both previously-returned samples and remote sensing data.

Key words: Moon, Orientale, impact craters, impact cratering, ejecta

Bandfield, J. L., Ghent, R. R., Vasavada, A. R., Paige, D. A., Lawrence, S. J., and Robinson, M. S. (2011). Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner radiometer data. J. Geophys. Res.: Planets, 116(E12), E00H02.

Barker, M. K., Mazarico, E., Neumann, G. A., Zuber, M. T., Haruyama, J., and Smith, D. E. (2016). A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus, 273, 346–355.

Campbell, B. A., Campbell, D. B., Margot, J. L., Ghent, R. R., Nolan, M., Chandler, J., Carter, L. M., and Stacy, N. J. S. (2007). Focused 70-cm wavelength radar mapping of the Moon. IEEE Trans. Geosci. Remote Sens., 45(12), 4032–4042.

Campbell, B. A., Carter, L. M., Campbell, D. B., Nolan, M., Chandler, J., Ghent, R. R., Hawke, B. R., Anderson, R. F., and Wells, K. (2010). Earth-based 12.6-cm wavelength radar mapping of the Moon: New views of impact melt distribution and mare physical properties. Icarus, 208(2), 565–573.

Campbell, D. B., Campbell, B. A., Carter, L. M., Margot, J. L., and Stacy, N. J. S. (2006). No evidence for thick deposits of ice at the lunar south pole. Nature, 443(7113), 835–837.

Carter, L. M., Campbell, B. A., Hawke, B. R., Campbell, D. B., and Nolan, M. C. (2009). Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon. J. Geophys. Res: Planets, 114(E11), E11004.

Fa, W. Z., and Eke, V. R. (2018). Unravelling the mystery of lunar anomalous craters using radar and infrared observations. J. Geophys. Res.: Planets, 123(8), 2119–2137.

Ghent, R. R., Leverington, D. W., Campbell, B. A., Hawke, B. R., and Campbell, D. B. (2005). Earth-based observations of radar-dark crater haloes on the Moon: Implications for regolith properties. J. Geophys. Res.: Planets, 110(E2), E02005.

Ghent, R. R., Campbell, B. A., Hawke, B. R., and Campbell, D. B. (2008). Earth-based radar data reveal extended deposits of the Moon’s Orientale basin. Geology, 36(5), 343–346.

Ghent, R. R., Gupta, V., Campbell, B. A., Ferguson, S. A., Brown, J. C. W., Fergason, R. L., and Carter, L. M. (2010). Generation and emplacement of fine-grained ejecta in planetary impacts. Icarus, 209(2), 818–835.

Ghent, R. R., Carter, L. M., Bandfield, J. L., Udovicic, C. J. T., and Campbell, B. A. (2016). Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations. Icarus, 273, 182–195.

Guo, D. J., Liu, J. Z., Head III, J. W., and Kreslavsky, M. A. (2018). Lunar orientale impact basin secondary craters: Spatial distribution, size-frequency distribution, and estimation of fragment size. J. Geophys. Res.: Planets, 123(6), 1344–1367.

Hartmann, W. K. (1964). Radial structures surrounding lunar basins, II: Orientale and other systems; Conclusions. Commun. Lunar Planet. Lab., 2(36), 175–192.

Hartmann, W. K. (2019). History of the terminal cataclysm paradigm: Epistemology of a planetary bombardment that never (?) happened. Geosciences, 9(7), 285.

Hawke, B. R., Peterson, C. A., Blewett, D. T., Bussey, D. B. J., Lucey, P. G., Taylor, G. J., and Spudis, P. D. (2003). Distribution and modes of occurrence of lunar anorthosite. J. Geophys. Res.: Planets, 108(E6), 5050.

Hayne, P. O., Bandfield, J. L., Siegler, M. A., Vasavada, A. R., Ghent, R. R., Williams, J. P., Greenhagen, B. T., Aharonson, O., Elder, C. M., … Paige, D. A. (2017). Global regolith thermophysical properties of the moon from the Diviner lunar radiometer experiment. J. Geophys. Res.: Planets, 122(12), 2371–2400.

Johnson, B. C., Blair, D. M., Collins, G. S., Melosh, H. J., Freed, A. M., Taylor, G. F., Head, J. W., Wieczorek, M. A., Andrews-Hanna, A. C., … Zuber, M. T. (2016). Formation of the Orientale lunar multiring basin. Science, 354(6311), 441–444.

Lucchitta, B. K. (1972). The Apollo 17 landing site. Nature, 240(5379), 259–260.

Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F., and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499(7456), 59–61.

Melosh, H. J. (1984). Impact ejection, spallation, and the origin of meteorites. Icarus, 59(2), 234–260.

Melosh, H. J. (1989). Ejecta deposits. In H. Charnock et al. Impact Cratering: A Geologic Process (pp. 87–110). New York: Oxford Univ. Press.222

Melosh, H. J. (2011). Impact cratering. In H. J. Melosh (Ed.), Planetary Surface Processes (pp. 222–275). Cambridge: Cambridge University Press.

Melosh, H. J., Freed, A. M., Johnson, B. C., Blair, D. M., Andrews-Hanna, J. C., Neumann, G. A., Phillips, R. J., Smith, D. E., Solomon, S. C., … Zuber, M. T. (2013). The origin of lunar mascon basins. Science, 340(6140), 1552–1555.

Meyer, H. M., Denevi, B. W., Boyd, A. K., and Robinson, M. S. (2016). The distribution and origin of lunar light plains around Orientale basin. Icarus, 273, 135–145.

Meyer, H. M., Denevi, B. W., Robinson, M. S., and Boyd, A. K. (2020). The global distribution of lunar light plains from the lunar reconnaissance orbiter camera. J. Geophys. Res.: Planets, 125(1), e2019JE006073.

Neish, C. D., Blewett, D. T., Harmon, J. K., Coman, E. I., Cahill, J. T. S., and Ernst, C. M. (2013). A comparison of rayed craters on the moon and mercury. J. Geophys. Res.: Planets, 118(10), 2247–2261.

Nozette, S., Spudis, P., Bussey, B., Jensen, R., Raney, K., Winters, H., Lichtenberg, C. L., Marinelli, W., Crusan, J., … Robinson, M. (2010). The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) technology demonstration. Space Sci. Rev., 150(1-4), 285–302.

Oberbeck, V. R. (1975). The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys., 13(2), 337–362.

Paige, D. A., Foote, M. C., Greenhagen, B. T., Schofield, J. T., Calcutt, S., Vasavada, A. R., Preston, D. J., Taylor, F. W., Allen, C. C., … McCleese, D. J. (2010). The lunar reconnaissance orbiter diviner lunar radiometer experiment. Space Sci. Rev., 150(1), 125–160.

Petro, N. E., and Pieters, C. M. (2006). Modeling the provenance of the Apollo 16 regolith. J. Geophys. Res.: Planets, 111(E9), 1–13.

Pike, R. J. (1974). Ejecta from large craters on the Moon: Comments on the geometric model of McGetchin et al. Earth Planet. Sci. Lett., 23(3), 265–271.

Robinson, M. S., Brylow, S. M., Tschimmel, M., Humm, D., Lawrence, S. J., Thomas, P. C., Denevi, B. W., Bowman-Cisneros, E., Zerr, J., … Hiesinger, H. (2010). Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev., 150(1), 81–124.

Schultz, P. H., and Gault, D. E. (1985). Clustered impacts: Experiments and implications. J. Geophys. Res.: Solid Earth, 90(B5), 3701–3732.

Spudis, P. D. (1994). The large impact process inferred from the geology of lunar multiring basins. In B. O. Dressler, et al. (Eds.), Large Meteorite Impacts and Planetary Evolution: Boulder (pp. 293). Boulder: Geological Society of America.222

Spudis, P. D., Wilhelms, D. E., and Robinson, M. S. (2011). The Sculptured Hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. J. Geophys. Res., 116, E00H03.

Wilhelms, D. E. (1987). The geologic history of the Moon. U. S. Geol. Surv. Prof. Pap., 1348, 1–302.

Xiao, Z. Y., and Werner, S. C. (2015). Size-frequency distribution of crater populations in equilibrium on the Moon. J. Geophys. Res.: Planets, 120(12), 2277–2292.

Xiao, Z. Y., Zeng, Z. X., Ding, N., and Molaro, J. (2013). Mass wasting features on the Moon–how active is the lunar surface?. Earth Planet. Sci. Lett., 376, 1–11.

Xiao, Z. Y. (2016). Size-frequency distribution of different secondary crater populations: 1. equilibrium caused by secondary impacts. J. Geophys. Res.: Planets, 121(12), 2404–2425.

Xie, M. G., and Zhu, M. H. (2016). Estimates of primary ejecta and local material for the Orientale basin: Implications for the formation and ballistic sedimentation of multi-ring basins. Earth Planet. Sci. Lett., 440, 71–80.

Zhao, H. X., and Magoulès, F. (2011). New parallel support vector regression for predicting building energy consumption. In 2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (pp. 14–21). Paris: IEEE.


ChunYu Ding, YuZhen Cai, ZhiYong Xiao, Yan Su, 2020: A rocky hill on the continuous ejecta of Ziwei crater revealed by the Chang’e-3 mission, Earth and Planetary Physics, 4, 105-110. doi: 10.26464/epp2020016


Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031


Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006


Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025


Paul Gautier Kamto, Cyrille Mezoue Adiang, Severin Nguiya, Joseph Kamguia, Loudi Yap, 0: Refinement of Bouguer anomalies derived from the EGM2008 model, impact on gravimetric signatures in mountainous region: Case of Cameroon Volcanic Line, Central Africa, Earth and Planetary Physics. doi: 10.26464/epp2020065

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Fine debris flows formed by the Orientale basin

YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui