Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Singh, D. (2020). Impact of surface Albedo on Martian photochemistry. Earth Planet. Phys., 4(3), 1–6.doi: 10.26464/epp2020025

doi: 10.26464/epp2020025

PLANETARY SCIENCES

Impact of surface Albedo on Martian photochemistry

Physical Research Laboratory, Ahmedabad, India

Corresponding author: Deepak Singh, sdeepak@umich.edu

Received Date: 2019-10-21
Web Publishing Date: 2020-03-01

Solar energy is the primary driving force behind a planet’s climate system, and surface albedo plays a key role in determining the energy budget of the planet. Coupling the Snow, Ice, and Aerosol Radiation (SNICAR) with the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model (MGCM) to create a new coupled model leads to an approximately 4% drop in the net CO2 ice deposition on Mars. Newly simulated surface albedo affects the concentration of gaseous species in the Martian atmosphere (condensation-sublimation cycle). The new set-up also impacts the solar energy available in the atmosphere. These two effects together lead to subsequent and significant changes in other chemical species in the Martian atmosphere. Compared with results of the MGCM model alone, in the new coupled model CO2 (gas) and O3 show a drop of about 1.17% and 8.59% in their respective concentrations, while H2O (vapor) and CO show an increase of about 13.63% and 0.56% in their respective concentrations. Among trace species, OH shows a maximum increase of about 29.44%, while the maximum drop of 11.5% is observed in the O concentration. Photochemically neutral species such as Ar and N2 remain unaffected by the albedo changes.

Key words: Mars, Albedo, snow, photochemistry, climate modelling

Atreya, S. K., and Gu, Z. G. (1995). Photochemistry and stability of the atmosphere of Mars. Adv. Space Res., 16(6), 57–68. https://doi.org/10.1016/0273-1177(95)00250-I

Barker, E. S., Schorn, R. A., Woszczyk, A., Tull, R. G., and Little, S. J. (1970). Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season. Science, 170(3964), 1308–1310. https://doi.org/10.1126/science.170.3964.1308

Barth, C. A., and Hord, C. W. (1971). Mariner ultraviolet spectrometer: Topography and polar cap. Science, 173(3993), 197–201. https://doi.org/10.1126/science.173.3993.197

Barth, C. A., Hord, C. W., Stewart, A. I., Lane, A. L., Dick, M. L., and Anderson, G. P. (1973). Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars. Science, 179(4075), 795–796. https://doi.org/10.1126/science.179.4075.795

Bony, S., Colman, R., R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., … Webb, M. J. (2006). How well do we understand and evaluate climate change feedback processes?. J. Climate, 19(15), 3445–3482. https://doi.org/10.1175/JCLI3819.1

Cantor, B. A., James, P. B., Caplinger, M., and Wolff, M. J. (2001). Martian dust storms: 1999 Mars orbiter camera observations. J. Geophys. Res.: Planets, 106(E10), 23653–23687. https://doi.org/10.1029/2000JE001310

Clancy, R. T., Wolff, M. J., Lefèvre, F., Cantor, B. A., Malin, M. C., and Smith, M. D. (2016). Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus, 266, 112–133. https://doi.org/10.1016/j.icarus.2015.11.016

Encrenaz, T., Greathouse, T. K., Richter, M. J., Lacy, J. H., Fouchet, T., Bézard, B., Lefèvre, F., Forget, F., and Atreya, S. K. (2011). A stringent upper limit to SO2 in the Martian atmosphere. Astron. Astrophys., 530, A37. https://doi.org/10.1051/0004-6361/201116820

Farmer, C. B., Davies, D. W., Holland, A. L., LaPorte, D. D., and Doms, P. E. (1977). Mars: Water vapor observations from the Viking orbiters. J. Geophys. Res., 82(28), 4225–4248. https://doi.org/10.1029/JS082i028p04225

Farmer, C. B., and Doms, P. E. (1979). Global seasonal variation of water vapor on Mars and the implications for permafrost. J. Geophys. Res.: Solid Earth, 84(B6), 2881–2888. https://doi.org/10.1029/JB084iB06p02881

Fast, K., Kostiuk, T., Espenak, F., Annen, J., Buhl, D., Hewagama, T., A'Hearn, M. F., Zipoy, D., Livengood, T. A., … Schmülling, F. (2006). Ozone abundance on Mars from infrared heterodyne spectra: I. Acquisition, retrieval, and anticorrelation with water vapor. Icarus, 181(2), 419–431. https://doi.org/10.1016/j.icarus.2005.12.001

Fedorova, A., Korablev, O., Bertaux, J. L., Rodin, A., Kiselev, A., and Perrier, S. (2006). Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. J. Geophys. Res.: Planets, 111(E9), E09S08. https://doi.org/10.1029/2006JE002695

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J. (2007). Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. Atmos, 112(D11), D11202. https://doi.org/10.1029/2006JD008003

Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J. (2009). Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9(7), 2481–2497. https://doi.org/10.5194/acp-9-2481-2009

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., … Rummukainen, M. (2013). Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 741–866). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.222

Forget, F., Hourdin, F., and Talagrand, O. (1998). CO2 snowfall on Mars: Simulation with a general circulation model. Icarus, 131(2), 302–316. https://doi.org/10.1006/icar.1997.5874

Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot, J. P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res.: Planets, 104(E10), 24155–24176. https://doi.org/10.1029/1999JE001025

Franz, H. B., Trainer, M. G., Wong, M. H., Mahaffy, P. R., Atreya, S. K., Manning, H. L. K., and Stern, J. C. (2015). Reevaluated Martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover. Planet. Space Sci., 109-110, 154–158. https://doi.org/10.1016/j.pss.2015.02.014

Franz, H. B., Trainer, M. G., Malespin, C. A., Mahaffy, P. R., Atreya, S. K., Becker, R. H., Benna, M., Conrad, P. G., Eigenbrode, J. L., … Wong, M. H. (2017). Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications. Planet. Space Sci., 138, 44–54. https://doi.org/10.1016/j.pss.2017.01.014

González-Galindo, F., López-Valverde, M. A., Angelats i Coll, M., and Forget, F. (2005). Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models. J. Geophys. Res.: Planets, 110(E9), E09008. https://doi.org/10.1029/2004JE002312

Jakosky, B. M., and Farmer, C. B. (1982). The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment. J. Geophys. Res.: Solid Earth, 87(B4), 2999–3019. https://doi.org/10.1029/JB087iB04p02999

Kaplan, L. D., Connes, J., and Connes, P. (1969). Carbon monoxide in the Martian atmosphere. Astrophys. J., 157, L187. https://doi.org/10.1086/180416

Krasnopolsky, V. A. (2015). Variations of carbon monoxide in the Martian lower atmosphere. Icarus, 253, 149–155. https://doi.org/10.1016/j.icarus.2015.03.006

Labs, D., Neckel, H. (1968). The radiation of the solar photosphere from 2000 Å to 100 µm. Zeitschrift fur Astrophysik, 69, 1.222

Lefèvre, F., Lebonnois, S., Montmessin, F., and Forget, F. (2004). Three-dimensional modeling of ozone on Mars. J. Geophys. Res.: Planets, 109(E7), E07004. https://doi.org/10.1029/2004JE002268

Madeleine, J. B., Forget, F., Millour, E., Montabone, L., and Wolff, M. J. (2011). Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res.: Planets, 116(E11), E11010. https://doi.org/10.1029/2011JE003855

McConnochie, T. H., Smith, M. D., Wolff, M. J., Bender, S., Lemmon, M., Wiens, R. C., Maurice, S., Gasnault, O., Lasue, J., … Bell III, J. F. (2018). Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 307, 294–326. https://doi.org/10.1016/j.icarus.2017.10.043

McElroy, M. B., and Donahue, T. M. (1972). Stability of the Martian atmosphere. Science, 177(4053), 986–988. https://doi.org/10.1126/science.177.4053.986

Modak, A., Sheel, V., and Montmessin, F. (2019). Retrieval of Martian ozone and dust from SPICAM spectrometer for MY27–MY28. J. Earth Syst. Sci., 128(6), 144. https://doi.org/10.1007/s12040-019-1167-9

Mumma, M. J., Villanueva, G. L., Novak, R. E., Hewagama, T., Bonev, B. P., DiSanti, M. A., Mandell, A. M. and Smith, M. D. (2009). Strong release of methane on Mars in northern summer 2003. Science, 323(5917), 1041–1045. https://doi.org/10.1126/science.1165243

Nair, H., Allen, M., Anbar, A. D., Yung, Y. L., and Clancy, R. T. (1994). A photochemical model of the Martian atmosphere. Icarus, 111(1), 124–150. https://doi.org/10.1006/icar.1994.1137

Navarro, T., Madeleine, J. B., Forget, F., Spiga, A., Millour, E., Montmessin, F., and Määttänen, A. (2014). Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res. Planets, 119(7), 1479–1495. https://doi.org/10.1002/2013JE004550

Pankine, A. A., Tamppari, L. K., and Smith, M. D. (2010). MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer. Icarus, 210(1), 58–71. https://doi.org/10.1016/j.icarus.2010.06.043

Perrier, S., Bertaux, J. L., Lefèvre, F., Lebonnois, S., Korablev, O., Fedorova, A., and Montmessin, F. (2006). Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res.: Planets, 111(E9), E09S06. https://doi.org/10.1029/2006JE002681

Pottier, A., Forget, F., Montmessin, F., Navarro, T., Spiga, A., Millour, E., Szantai, A., and Madeleine, J. B. (2017). Unraveling the Martian water cycle with high-resolution global climate simulations. Icarus, 291, 82–106. https://doi.org/10.1016/j.icarus.2017.02.016

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., … Taylor, K. E. (2007). Climate models and their evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.222

Shell, K. M., Kiehl, J. T., and Shields, C. A. (2008). Using the radiative kernel technique to calculate climate feedbacks in NCAR's community atmospheric model. J. Climate, 21(10), 2269–2282. https://doi.org/10.1175/2007JCLI2044.1

Singh, D., Flanner, M. G., and Perket, J. (2015). The global land shortwave cryosphere radiative effect during the MODIS era. The Cryosphere, 9(6), 2057–2070. https://doi.org/10.5194/tc-9-2057-2015

Singh, D., and Flanner, M. G. (2016). An improved carbon dioxide snow spectral albedo model: Application to Martian conditions. J. Geophys. Res.: Planets, 121(10), 2037–2054. https://doi.org/10.1002/2016JE005040

Singh, D., Flanner, M. G., and Millour, E. (2018). Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR. J. Geophys. Res.: Planets, 123(3), 780–791. https://doi.org/10.1002/2017JE005368

Smith, M. D. (2002). The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. J. Geophys. Res.: Planets, 107(E11), 25-1–25-19. https://doi.org/10.1029/2001JE001522

Smith, M. D. (2004). Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus, 167(1), 148–165. https://doi.org/10.1016/j.icarus.2003.09.010

Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., and Shields, C. A. (2008). Quantifying climate feedbacks using radiative kernels. J. Climate, 21(14), 3504–3520. https://doi.org/10.1175/2007JCLI2110.1

Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K. (1989). Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94(D13), 16,287–16,301. https://doi.org/10.1029/JD094iD13p16287

Willame, Y., Vandaele, A. C., Depiesse, C., Lefèvre, F., Letocart, V., Gillotay, D., and Montmessin, F. (2017). Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra. Planet. Space Sci., 142, 9–25. https://doi.org/10.1016/j.pss.2017.04.011

Winton, M. (2006). Surface albedo feedback estimates for the AR4 climate models. J. Climate, 19(3), 359–365. https://doi.org/10.1175/JCLI3624.1

[1]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[2]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[3]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[4]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[5]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[6]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[7]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[8]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[9]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[10]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[11]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[12]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[13]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[14]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Impact of surface Albedo on Martian photochemistry

Deepak Singh