Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wang, J. Y., Yi, W., Chen, T. D., and Xue, X. H. (2020). Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation. Earth Planet. Phys., 4(3), 285–295doi: 10.26464/epp2020024

2020, 4(3): 285-295. doi: 10.26464/epp2020024

ATMOSPHERIC PHYSICS

Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China

4. 

Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

Corresponding author: TingDi Chen, ctd@ustc.edu.cn

Received Date: 2019-12-17
Web Publishing Date: 2020-05-01

By using atmospheric wind data in the mesopause and lower thermosphere (MLT) region, features of seasonal variations in the quasi-6-day wave (6DW) at different latitudes are analyzed, and modulation of the 6DW by the diurnal tide and solar 27-day period is discussed. The data used in the analysis are extracted from a wind dataset collected by a meteor radar chain from December 2008 to November 2017. The meteor radar chain includes four stations, in Mohe, Beijing, Wuhan, and Sanya. Features of seasonal variations in the 6DW indicate that in summer the 6DW is usually strongest during July and August, followed by stronger variations in January and April. At certain altitudes over Wuhan and Sanya, the 6DW is slightly different in different years and altitudes. In our analysis of seasonal variations in the 6DW, we find that it is generally affected by annual oscillations and semiannual oscillations. The annual oscillations of the 6DW in the mid-low latitudes are modulated by the quasibiennial oscillation in the diurnal tide, resulting in seasonal features that are different from those at other latitudes. In addition, the 6DW amplitude at mid-high latitudes has a significant 27-day solar rotation variation, which was prominent in 2016.

Key words: quasi-6-day wave, meteor radar winds, seasonal variations, quasibiennial oscillation, tides, 27-day variation

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 489). San Diego, Calif: Academic.222

Belova, A., Kirkwood, S., Murtagh, D., Mitchell, N., Singer, W., and Hocking, W. (2008). Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007. Ann. Geophys., 26(11), 3557–3570. https://doi.org/10.5194/angeo-26-3557-2008

Forbes, J. M. (2000). Wave coupling between the lower and upper atmosphere: case study of an ultra-fast Kelvin Wave. J. Atmos. Sol. -Terr. Phys., 62(17-18), 1603–1621. https://doi.org/10.1016/s1364-6826(00)00115-2

Forbes, J. M., and Zhang, X. L. (2017). The quasi-6 day wave and its interactions with solar tides. J. Geophys. Res.-Space Phys., 122(4), 4764–4776. https://doi.org/10.1002/2017ja023954

Franke, S. J., Chu, X., Liu, A. Z., and Hocking, W. K. (2005). Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause region above Maui, Hawaii. J. Geophys. Res.-Atmos., 110(D9), D09S02. https://doi.org/10.1029/2003jd004486

Gan, Q., Wang, W. B., Yue, J., Liu, H. L., Chang, L. C., Zhang, S. D., Burns, A., and Du, J. A. (2016). Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation. J. Geophys. Res.-Space Phys., 121(10), 10103–10116. https://doi.org/10.1002/2016ja022907

Garcia, R. R., Lieberman, R., Russell Ⅲ, J. M., and Mlynczak, M. G. (2005). Large-scale waves in the mesosphere and lower thermosphere observed by SABER. J. Atmos. Sci., 62(12), 4384–4399. https://doi.org/10.1175/jas3612.1

Geisler, J. E., and Dickinson, R. E. (1976). The five-day wave on a sphere with realistic zonal winds. J. Atmos. Sci., 33(4), 632–641. https://doi.org/10.1175/1520-0469(1976)033<0632:Tfdwoa>2.0.Co;2

Gong, Y., Li, C., Ma, Z., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Li, G. Z., and Ning, B. Q. (2018). Study of the quasi-5-day wave in the MLT region by a meteor radar chain. J. Geophys. Res.-Atmos., 123(17), 9474–9487. https://doi.org/10.1029/2018jd029355

Gu, S. Y., Ruan, H. B., Yang, C. Y., Gan, Q., Dou, X. K., and Wang, N. N. (2018). The morphology of the 6-day wave in both the neutral atmosphere and F region ionosphere under solar minimum conditions. J. Geophys. Res.-Space Phys., 123(5), 4232–4240. https://doi.org/10.1029/2018ja025302

Hocking, W. K., Fuller, B., and Vandepeer, B. (2001). Real-time determination of meteor-related parameters utilizing modern digital technology. J. Atmos. Sol. -Terr. Phys., 63(2-3), 155–169. https://doi.org/10.1016/s1364-6826(00)00138-3

Holdsworth, D. A., Reid, I. M., and Cervera, M. A. (2004). Buckland Park all-sky interferometric meteor radar. Radio Sci., 39(5), RS5009. https://doi.org/10.1029/2003rs003014

Huang, Y. Y., Zhang, S. D., Li, C. Y., Li, H. J., Huang, K. M., and Huang, C. M. (2017). Annual and interannual variations in global 6.5DWs from 20 to 110 km during 2002–2016 observed by TIMED/SABER. J. Geophys. Res.-Space Phys., 122(8), 8985–9002. https://doi.org/10.1002/2017ja023886

Jiang, G., Xiong, J., Wan, W., Ning, B., and Liu, L. (2008a). Observation of 6.5-day waves in the MLT region over Wuhan. J. Atmos. Sol. -Terr. Phys., 70(1), 41–48. https://doi.org/10.1016/j.jastp.2007.09.008

Jiang, G., Xu, J. Y., Xiong, J., Ma, R., Ning, B., Murayama, Y., Thorsen, D., Gurubaran, S., Vincent, R. A., … Franke, S. J. (2008b). A case study of the mesospheric 6.5-day wave observed by radar systems. J. Geophys. Res.-Atmos., 113(D16), D16111. https://doi.org/10.1029/2008jd009907

Lean, J. (1991). Variations in the sun’s radiative output. Rev. Geophys., 29(4), 505–535. https://doi.org/10.1029/91rg01895

Li, G. Z., Ning, B. Q., Li, A., Yang, S. P., Zhao, X. K., Zhao, B. Q., and Wan, W. X. (2018). First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations. Earth Planet. Phys., 2(2), 15–21. https://doi.org/10.26464/epp2018002

Lieberman, R. S., Riggin, D. M., Franke, S. J., Manson, A. H., Meek, C., Nakamura, T., Tsuda, T., Vincent, R. A., and Reid, I. (2003). The 6.5-day wave in the mesosphere and lower thermosphere: Evidence for baroclinic/barotropic instability. J. Geophys. Res.-Atmos., 108(D20), 4640. https://doi.org/10.1029/2002jd003349

Liu, H. L., Talaat, E. R., Roble, R. G., Lieberman, R. S., Riggin, D. M., and Yee, J. H. (2004). The 6.5-day wave and its seasonal variability in the middle and upper atmosphere. J. Geophys. Res.-Atmos., 109(D21), D21112. https://doi.org/10.1029/2004jd004795

Liu, H. L., Wang, W., Richmond, A. D., and Roble, R. G. (2010). Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res.-Space Phys., 115(A6), A00G01. https://doi.org/10.1029/2009ja015188

Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39(2), 447–462. https://doi.org/10.1007/bf00648343

Meyer, C. K., and Forbes, J. M. (1997). A 6.5-day westward propagating planetary wave: Origin and characteristics. J. Geophys. Res.-Atmos., 102(D22), 26173–26178. https://doi.org/10.1029/97jd01464

Miyoshi, Y., and Hirooka, T. (1999). A numerical experiment of excitation of the 5-day wave by a GCM. J. Atmos. Sci., 56(11), 1698–1707. https://doi.org/10.1175/1520-0469(1999)056<1698:Aneoeo>2.0.Co;2

Miyoshi, Y., and Hirooka, T. (2003). Quasi-biennial variation of the 5-day wave in the stratosphere. J. Geophys. Res.-Atmos., 108(D19), 4620. https://doi.org/10.1029/2002jd003145

Riggin, D. M., Liu, H. L., Lieberman, R. S., Roble, R. G., Russell Ⅲ, J. M., Mertens, C. J., Mlynczak, M. G., Pancheva, D., Franke, S. J., … Vincent, R. A. (2006). Observations of the 5-day wave in the mesosphere and lower thermosphere. J. Atmos. Sol. -Terr. Phys., 68(3-5), 323–339. https://doi.org/10.1016/j.jastp.2005.05.010

Salby, M. L. (1981). Rossby normal modes in nonuniform background configurations. Part Ⅱ. Equinox and solstice conditions. J. Atmos. Sci., 38(9), 1827–1840. https://doi.org/10.1175/1520-0469(1981)038<1827:Rnminb>2.0.Co;2

Salby, M. L. (1984). Survey of planetary-scale traveling waves: the state of theory and observations. Rev. Geophys., 22(2), 209–236. https://doi.org/10.1029/RG022i002p00209

Scargle, J. D. (1982). Studies in astronomical time series analysis. Ⅱ. statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263(2), 835–853. https://doi.org/10.1086/160554

Talaat, E. R., Yee, J. H., and Zhu, X. (2001). Observations of the 6.5-day wave in the mesosphere and lower thermosphere. J. Geophys. Res.-Atmos., 106(D18), 20715–20723. https://doi.org/10.1029/2001jd900227

Wu, D. L., Hays, P. B., and Skinner, W. R. (1994). Observations of the 5-day wave in the mesosphere and lower thermosphere. Geophys. Res. Lett., 21(24), 2733–2736. https://doi.org/10.1029/94gl02660

Yi, W., Xue, X. H., Reid, I. M., Murphy, D. J., Hall, C. M., Tsutsumi, M., Ning, B. Q., Li, G. Z., Vincent, R. A., … Dou, X. K. (2019). Climatology of the mesopause relative density using a global distribution of meteor radars. Atmos. Chem. Phys., 19(11), 7567–7581. https://doi.org/10.5194/acp-19-7567-2019

[1]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[2]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[3]

YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050

[4]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[5]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[6]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[7]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[8]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[9]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[10]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[11]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[12]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[13]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[14]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[15]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue