Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yi, J., Gu, X. D., Cheng, W., Tang, X. Y., Chen, L., Ni, B. B., Zhou, R. X., Zhao, Z. Y., Wang, Q., and Zhou, L. Q. (2020). A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters. Earth Planet. Phys., 4(3), 238–245doi: 10.26464/epp2020023

2020, 4(3): 238-245. doi: 10.26464/epp2020023

SPACE PHYSICS: IONOSPHERIC PHYSI

A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China

Corresponding author: XuDong Gu, guxudong@whu.edu.cnBinBin Ni, bbni@whu.edu.cn

Received Date: 2019-09-05
Web Publishing Date: 2020-05-01

As a companion paper to Zhou RX et al. (2020), this study describes application of the automatic detection and analysis module to identify all the tweek atmospherics detectible in the WHU ELF/VLF receiver data collected at Suizhou station during the period of 3 February through 29 February 2016. Detailed analysis of the identified low-latitude tweek events reveals that the occurrence rate varies considerably — from 800 to 6000 tweeks per day, and exhibits a strong diurnal and local time dependence, the peak occurring before local midnight. The diurnal variation of identified tweeks was similar to that of the lightning data obtained by the World-Wide Lightning Location Network (WWLLN).. Estimates of the propagation distance and ionospheric reflection height of tweek atmospherics suggest that the majority (~92%) of the low latitude tweeks originate from the lightning activity within a radius of 4000 km and that they are very likely to reflect from the lower ionospheric D-region at the height range of 75–85 km. At these lower ionospheric reflection altitudes, ~74% of the corresponding electron densities from the tweek spectral measurements are within 24.5–27.5 cm-3. The daily variation of estimated D-region electron densities in the considered period (February 2016) also exhibits a small overall increasing trend from early to later in the month.

Key words: ionospheric D-region, electron density, tweek atmospherics

Abarca, S. F., Corbosiero, K. L., and Galarneau, Jr. T. J. (2010). An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res. Atmos., 115(D18), D18206. https://doi.org/10.1029/2009JD013411

Budden, K. G. (1961). The Wave-Guide Mode Theory of Wave Propagation. Englewood Cliffs, New Jersey: Prentice-Hall.222

Chen, Y. P., Yang, G. B., Ni, B. B., Zhao, Z. Y., Gu, X. D., Zhou, C., and Wang, F. (2016). Development of ground-based ELF/VLF receiver system in Wuhan and its first results. Adv. Space Res., 57(9), 1871–1880. https://doi.org/10.1016/j.asr.2016.01.023

Chen, Y. P., Ni, B. B., Gu, X. D., Zhao, Z. Y., Yang, G. B., Zhou, C., and Zhang, Y. N. (2017). First observations of low latitude whistlers using WHU ELF/VLF receiver system. Sci. China Technol. Sci., 60(1), 166–174. https://doi.org/10.1007/s11431-016-6103-5

Helliwell, R. A. (1965). Whistlers and Related Ionospheric Phenomena. Stanford: Stanford University Press.222

Hepburn, F. (1959). Interpretation of smooth type atmospheric waveforms. J. Atmos. Terr. Phy., 14(3-4), 262–272. https://doi.org/10.1016/0021-9169(59)90038-8

Hutchins, M. L., Holzworth, R. H., Rodger, C. J., and Brundell, J. B. (2012). Far-field power of lightning strokes as measured by the world wide lightning location network. J. Atmos. Oceanic Technol., 29(8), 1102–1110. https://doi.org/10.1175/jtech-d-11-00174.1

Kumar, S., Dixit, S. K., and Gwal, A. K. (1994). Propagation of tweek atmospherics in the earth-ionosphere wave guide. Il Nuovo Cimento C, 17(3), 275–280. https://doi.org/10.1007/BF02509168

Kumar, S., Kishore, A., and Ramachandran, V. (2008). Higher harmonic tweek sferics observed at low latitude: estimation of VLF reflection heights and tweek propagation distance. Ann. Geophys., 26(6), 1451–1459. https://doi.org/10.5194/angeo-26-1451-2008

Kumar, S., Deo, A., and Ramachandran, V. (2009). Nighttime D-region equivalent electron density determined from tweek sferics observed in the South Pacific Region. Earth Planets Space, 61(7), 905–911. https://doi.org/10.1186/BF03353201

Maurya, A. K., Singh, R., Veenadhari, B., Pant, P., and Singh, A. K. (2010). Application of lightning discharge generated radio atmospherics/tweeks in lower ionospheric plasma diagnostics. J. Phys. Conf. Ser., 208(1), 012061. https://doi.org/10.1088/1742-6596/208/1/012061

Maurya, A. K., Singh, R., Veenadhari, B., Kumar S., Cohen, M. B., Selvakumaran, R., Pant, P., Singh, A. K., Siingh, D., Inan, U. S. (2012a). Morphological features of tweeks and nighttime D region ionosphere at tweek reflection height from the observations in the low-latitude Indian sector. J. Geophys. Res. Space Phys., 117(A5), A05301. https://doi.org/10.1029/2011JA016976

Maurya, A. K., Veenadhari, B., Singh, R., Kumar, S., Cohen, M. B., Selvakumaran, R., Gokani, S., Pant, P., Singh, A. K., and Inan, U. S. (2012b). Nighttime D region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes. J. Geophys. Res. Space Phys., 117(A11), A11308. https://doi.org/10.1029/2012ja017876

Ohya, H., Nishino, M., Murayama, Y., and Igarashi, K. (2003). Equivalent electron densities at reflection heights of tweek atmospherics in the low-middle latitude D-region ionosphere. Earth Planets Space, 55(10), 627–635. https://doi.org/10.1186/BF03352469

Ohya, H., Shiokawa, K., and Miyoshi, Y. (2008). Development of an automatic procedure to estimate the reflection height of tweek atmospherics. Earth Planets Space, 60(8), 837–843. https://doi.org/10.1186/BF03352835

Ohya, H., Shiokawa, K., and Miyoshi, Y. (2011). Long-term variations in tweek reflection height in the D and lower E regions of the ionosphere. J. Geophys. Res. Space Phys., 116, A10322. https://doi.org/10.1029/2011JA016800

Ohya, H., Tsuchiya, F., Nakata, H., Shiokawa, K., Miyoshi, Y., Yamashita, K., and Takahashi, Y. (2012). Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009. J. Geophys. Res. Space Phys., 117(A11), A11310. https://doi.org/10.1029/2012JA018151

Ohya, H., Shiokawa, K., and Miyoshi, Y. (2015). Daytime tweek atmospherics. J. Geophys. Res. Space Phys., 120(1), 654–665. https://doi.org/10.1002/2014JA020375

Outsu, J. (1960). Numerical study of tweeks based on waveguide mode theory. Proc. Res. Inst. Atmos., 7, 58–71.

Ramachandran, V., Prakash, J. N., Deo, A., and Kumar, S. (2007). Lightning stroke distance estimation from single station observation and validation with WWLLN data. Ann. Geophys., 25(7), 1509–1517. https://doi.org/10.5194/angeo-25-1509-2007

Rodger, C. J., Brundell J. B., Dowden, R. L., and Thomson, N. R. (2004). Location accuracy of long distance VLF lightning location network. Ann. Geophys., 22(3), 747–758. https://doi.org/10.5194/angeo-22-747-2004

Shariff, K. K. M., Salut, M. M., Abdullah, M., and Graf, K. L. (2011). Investigation of the D-region ionosphere characteristics using tweek atmospherics at low latitudes. In Proceedings of 2011 IEEE International Conference on Space Science and Communication. Penang, Malaysia: IEEE. https://doi.org/10.1109/IConSpace.2011.6015867222

Shvets, A. V., and Hayakawa, M. (1998). Polarisation effects for tweek propagation. J. Atmos. Sol. -Terr. Phys., 60(4), 461–469. https://doi.org/10.1016/S1364-6826(97)00131-4

Singh, R., Veenadhari, B., Maurya, A. K., Cohen, M. B., Kumar, S., Selvakumaran, R., Pant, P., Singh, A. K., and Inan, U. S. (2011). D-region ionosphere response to the total solar eclipse of 22 July 2009 deduced from ELF-VLF tweek observations in the Indian sector. J. Geophys. Res. Space Phys., 116(A10), A10301. https://doi.org/10.1029/2011JA016641

Yano, S., Ogawa, T., and Hagino, H. (1991). Dispersion characteristics and waveform analysis of tweek atmospherics. In H. Kikuchi (Ed.), Environmental and Space Electromagnetics (pp. 227-236). Tokyo: Springer. https://doi.org/10.1007/978-4-431-68162-5_23222

Yi, J., Gu, X. D., Li, Z. P., Lin, R. T., Cai, Y. H., Chen, L., Ni, B. B., and Yue, X. A. (2019). Modeling and analysis of NWC signal propagation amplitude based on LWPC and IRI models. Chinese J. Geophys. (in Chinese) , 62(2), 3223–3234. https://doi.org/10.6038/cjg2019N0190

Yusop, N., Ya'Acob, N., Shariff, K. K. M., Yusof, A. L., Ali, M. T., Idris, A., and Ali, D. M. (2013). Nighttime D-region ionosphere characteristics from tweek atmospherics observed in the North America Region. In 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). Melaka, Malaysia: IEEE. https://doi.org/10.1109/APACE.2012.6457641222

Zhou, R. X., Gu, X. D., Ni, B. B., Yi, J., Chen, L., Zhao, F. T., Zhao, Z. Y., Wang, Q., and Zhou, L. Q. (2020). A detailed investigation of low latitude tweek atmospherics observed by WHU ELF/VLF receiver: 1. Automatic detection and analysis method. Earth Planet. Phys. (in press).222

[1]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[2]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

[3]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[4]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[5]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[6]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[7]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[8]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics. doi: 10.26464/epp2020037

[9]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[10]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[11]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[12]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[13]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics. doi: 10.26464/epp2020038

[14]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[15]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[16]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[17]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[18]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, and Qi Zhu, 0: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020060

[19]

Shucan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong XU, Safi Ullah, Abdur Rauf and Abdel Hannachid, 0: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics. doi: 10.26464/epp2020061

[20]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters

Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou