Citation:
Huang, Z., Yuan, Z. G., and Yu, X. D. (2020). Evolutions of equatorial ring current ions during a magnetic storm. Earth Planet. Phys., 4(2), 131–137doi: 10.26464/epp2020019
2020, 4(2): 131-137. doi: 10.26464/epp2020019
Evolutions of equatorial ring current ions during a magnetic storm
School of Electronic Information, Wuhan University, Wuhan 420072, China |
In this paper, we present evolutions of the phase space density (PSD) spectra of ring current (RC) ions based on observations made by Van Allen Probe B during a geomagnetic storm on 23–24 August 2016. By analyzing PSD spectra ratios from the initial phase to the main phase of the storm, we find that during the main phase, RC ions with low magnetic moment μ values can penetrate deeper into the magnetosphere than can those with high μ values, and that the μ range of PSD enhancement meets the relationship: S(O+) >S(He+) >S(H+). Based on simultaneously observed ULF waves, theoretical calculation suggests that the radial transport of RC ions into the deep inner magnetosphere is caused by drift-bounce resonance interactions, and the efficiency of these resonance interactions satisfies the relationship: η(O+) > η(He+) > η(H+), leading to the differences in μ range of PSD enhancement for different RC ions. In the recovery phase, the observed decay rates for different RC ions meet the relationship: R(O+) > R(He+) > R(H+), in accordance with previous theoretical calculations, i.e., the charge exchange lifetime of O+ is shorter than those of H+ and He+.
Baumjohann, W., and Treumann, R. A. (1997). Basic Space Plasma Physics. London: Imperial College Press.222 |
Borovsky, J. E., and Denton, M. H. (2006). Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. Space Phys., 111(A7), A07S08. https://doi.org/10.1029/2005JA011447 |
Claudepierre, S. G., Elkington, S. R., and Wiltberger, M. (2008). Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. Space Phys., 113(A5), A05218. https://doi.org/10.1029/2007JA012890 |
Daglis, I. A. (1997). The role of magnetosphere-ionosphere coupling in magnetic storm dynamics. In B. T. Tsurutani, et al. (Eds.), Magnetic Storms (Vol. 98, pp. 107–116). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM098p0107222 |
Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Rev. Geophys., 37(4), 407–438. https://doi.org/10.1029/1999RG900009 |
Daglis, I. A. (2006). Ring current dynamics. Space Sci. Rev., 124(1-4), 183–202. https://doi.org/10.1007/s11214-006-9104-z |
Dai, L., Takahashi, K., Wygant, J. R., Chen, L., Bonnell, J., Cattell, C. A., Thaller, S., Kletzing, C., Smith, C. W., … Spence, H. E. (2013). Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction. Geophys. Res. Lett., 40(16), 4127–4132. https://doi.org/10.1002/grl.50800 |
Elkington, S. R., Hudson, M. K., and Chan, A. A. (2003). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res. Space Phys., 108(A3), 1116. https://doi.org/10.1029/2001JA009202 |
Gloeckler, G., Wilken, B., Stüdemann, W., Ipavich, F. M., Hovestadt, D., Hamilton, D. C., and Kremser, G. (1985). First composition measurement of the bulk of the storm-time ring current (1 to 300 keV/e) with AMPTE-CCE. Geophys. Res. Lett., 12(5), 325–328. https://doi.org/10.1029/GL012i005p00325 |
Greenspan, M. E., and Hamilton, D. C. (2002). Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum. J. Geophys. Res. Space Phys., 107(A4), SMP 3-1–SMP 3-9. https://doi.org/10.1029/2001JA000155 |
Hamilton, D. C., Gloeckler, G., Ipavich, F. M., Stüdemann, W., Wilken, B., and Kremser, G. (1988). Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. Space Phys., 93(A12), 14343–14355. https://doi.org/10.1029/JA093iA12p14343 |
Hartinger, M. D., Turner, D. L., Plaschke, F., Angelopoulos, V., and Singer, H. (2013). The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. J. Geophys. Res. Space Phys., 118(1), 299–312. https://doi.org/10.1029/2012JA018349 |
Kamide, Y., Baumjohann, W., Daglis, I. A., Gonzalez, W. D., Grande, M., Joselyn, J. A., McPherron, R. L., Phillips, J. L., Reeves, E. G. D., … Vasyliunas, V. M. (1998). Current understanding of magnetic storms: Storm-substorm relationships. J. Geophys. Res. Space Phys., 103(A8), 17705–17728. https://doi.org/10.1029/98JA01426 |
Keika, K., Kistler, L. M., and Brandt, P. C. (2013). Energization of O+ ions in the Earth’s inner magnetosphere and the effects on ring current buildup: A review of previous observations and possible mechanisms. J. Geophys. Res. Space Phys., 118(7), 4441–4464. https://doi.org/10.1002/jgra.50371 |
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6 |
Kozyra, J. U., Jordanova, V. K., Home, R. B., and Thorne, R. M. (1997). Modeling of the contribution of electromagnetic ion cyclotron (EMIC) waves to stormtime ring current erosion. In B. T. Tsurutani, et al. (Eds.), Magnetic Storms (pp. 187-202). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM098p0187222 |
Liu, W., Cao, J. B., Li, X., Sarris, T. E., Zong, Q. Z., Hartinger, M., Takahashi, K., Zhang, H., Shi, Q. Q., and Angelopoulos, V. (2013). Poloidal ULF wave observed in the plasmasphere boundary layer. J. Geophys. Res. Space Phys., 118(7), 4298–4307. https://doi.org/10.1002/jgra.50427 |
Liu, Z. Y., Zong, Q.-G., Zhou, X. Z., Hao, Y. X., Yau, A. W., Zhang, H., Chen, X. R., Fu, S. Y., Pollock, C. J., … Lindqvist, P. A. (2019). ULF waves modulating and acting as mass spectrometer for dayside ionospheric outflow ions. Geophys. Res. Lett., 46(15), 8633–8642. https://doi.org/10.1029/2019GL083849 |
Loto'aniu, T. M., Mann, I. R., Ozeke, L. G., Chan, A. A., Dent, Z. C., and Milling, D. K. (2006). Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J. Geophys. Res. Space Phys., 111(A4), A04218. https://doi.org/10.1029/2005JA011355 |
Lyons, L. R., and Williams, D. J. (1984). Quantitative Aspects of Magnetospheric Physics (pp. 79-86). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-2819-5222 |
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Sci. Rev., 179(1-4), 3–27. https://doi.org/10.1007/s11214-012-9908-y |
Mitani, K., Seki, K., Keika, K., Gkioulidou, M., Lanzerotti, L. J., Mitchell, D. G., and Kletzing, C. A. (2018). Radial transport of higher-energy oxygen ions into the deep inner magnetosphere observed by Van Allen Probes. Geophys. Res. Lett., 45(10), 4534–4541. https://doi.org/10.1029/2018GL077500 |
Mitchell, D. G., Lanzerotti, L. J., Kim, C. K., Stokes, M., Ho, G., Cooper, S., Ukhorskiy, A., Manweiler, J. W., Jaskulek, S., … Kerem, S. (2013). Radiation belt storm probes ion composition experiment (RBSPICE). Space Sci. Rev., 179(1-4), 263–308. https://doi.org/10.1007/s11214-013-9965-x |
Shi, Q. Q., Hartinger, M., Angelopoulos, V., Zong, Q.-G., Zhou, X. Z., Zhou, X. Y., Kellerman, A., Tian, A. N., Weygand, J., … Yao, Z. H. (2013). THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events. J. Geophys. Res. Space Phys., 118(1), 284–298. https://doi.org/10.1029/2012JA017984 |
Shi, Q. Q., Hartinger, M. D., Angelopoulos, V., Tian, A. M., Fu, S. Y., Zong, Q.-G., Weygand, J. W., Raeder, J., Pu, Z. Y., … Shen, X. C. (2014). Solar wind pressure pulse-driven magnetospheric vortices and their global consequences. J. Geophys. Res. Space Phys., 119(6), 4274–4280. https://doi.org/10.1002/2013JA019551 |
Smith, P. H., and Bewtra, N. K. (1978). Charge exchange lifetimes for ring current ions. Space Sci. Rev., 22(3), 301–318. https://doi.org/10.1007/BF00239804 |
Southwood, D. J., Dungey, J. W., and Etherington, R. J. (1969). Bounce resonant interaction between pulsations and trapped particles. Planet. Space Sci., 17(3), 349–361. https://doi.org/10.1016/0032-0633(69)90068-3 |
Yang, B., Zong, Q.-G., Fu, S. Y., Li, X., Korth, A., Fu, H. S., Yue, C., and Rème, H. (2011). The role of ULF waves interacting with oxygen ions at the outer ring current during storm times. J. Geophys. Res. Space Phys., 116(A1), A01203. https://doi.org/10.1029/2010JA015683 |
Yue, C., Bortnik, J., Li, W., Ma, Q. L., Gkioulidou, M., Reeves, G. D., Wang, C. P., Thorne, R. M., Lui, A. T. Y., … Mitchell, D. G. (2018). The composition of plasma inside geostationary orbit based on Van Allen Probes observations. J. Geophys. Res. Space Phys., 123(8), 6478–6493. https://doi.org/10.1029/2018JA025344 |
Yue, C., Bortnik, J., Li, W., Ma, Q. L., Wang, C. P., Thorne, R. M., Lyons, L., Reeves, G. D., Spence, H. E., … Mitchell, D. G. (2019). Oxygen ion dynamics in the earth's ring current: Van Allen probes observations. J. Geophys. Res. Space Phys., 124(10), 7786–7798. https://doi.org/10.1029/2019JA026801 |
Zhang, X. Y., Zong, Q.-G., Wang, Y., Zhang, H., Xie, L., Fu, S. Y., Yuan, C. J., Yue, C., Yang, B., Pu, Z. Y. (2010). ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. J. Geophys. Res. Space Phys., 115(A10), A10221. https://doi.org/10.1029/2009JA015016 |
Zong, Q.-G., Zhou, X. Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz, T. A., Daly, P. W., Dunlop, M., and Pedersen, A. (2009). Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. Space Phys., 114(A10), A10204. https://doi.org/10.1029/2009JA014393 |
Zong, Q.-G., Wang, Y. F., Zhang, H., Fu, S. Y., Zhang, H., Wang, C. R., Yuan, C. J., and Vogiatzis, I. (2012). Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J. Geophys. Res. Space Phys., 117(A11), A11206. https://doi.org/10.1029/2012JA018024 |
Zong, Q.-G., Wang, Y. F., Ren, J., Zhou, X. Z., Fu, S. Y., Rankin, R., and Zhang, H. (2017). Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves. Earth Planet. Phys., 1(1), 2–12. https://doi.org/10.26464/epp2017002 |
[1] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[2] |
Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060 |
[3] |
HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032 |
[4] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[5] |
Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051 |
[6] |
Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012 |
[7] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[8] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[9] |
Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034 |
[10] |
Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021 |
[11] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[12] |
KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005 |
[13] |
Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062 |
[14] |
Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039 |
[15] |
Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok, 2021: Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms, Earth and Planetary Physics, 5, 180-186. doi: 10.26464/epp2021015 |
[16] |
YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043 |
[17] |
WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023 |
[18] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[19] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[20] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)