Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ding, C. Y., Cai, Y. Z., Xiao, Z. Y., and Su, Y. (2020). A rocky hill on the continuous ejecta of Ziwei crater revealed by the Chang’e-3 mission. Earth Planet. Phys., 4(2), 105–110doi: 10.26464/epp2020016

2020, 4(2): 105-110. doi: 10.26464/epp2020016

PLANETARY SCIENCES

A rocky hill on the continuous ejecta of Ziwei crater revealed by the Chang’e-3 mission

1. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

2. 

State Key Laboratory of Lunar and Planetary Sciences, Space Science Institute, Macau University of Science and Technology, Macau 999078, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China

4. 

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

Corresponding author: ZhiYong Xiao, xiaozhiyong@mail.sysu.edu.cn

Received Date: 2019-10-15
Web Publishing Date: 2020-03-01

The Chinese Chang'e-3 mission landed close to the eastern rim of the ~450 m diameter Ziwei crater. Regional stratigraphy of the landing site and impact excavation model suggest that the bulk continuous ejecta deposits of the Ziwei crater are composed by Erathothenian-aged mare basalts. Along the traverse of the Yutu rover, the western segment features a gentle topographic uplift (~0.5 m high over ~4 m), which is spatially connected with the structurally-uplifted crater rim. Assuming that this broad topographic uplift has physical properties discontinuous with materials below, we use data returned by the high-frequency lunar penetrating radar onboard the Yutu rover to estimate the possible range of relative permittivity for this topographic uplift. Only when the relative permittivity is ~9 is the observed radar reflection consistent with the observed topography, suggesting that the topographic uplift is composed of basaltic blocks that were excavated by the Ziwei crater. This result is consistent both with the impact excavation model that predicts deeper basaltic materials being deposited closer to the crater rim, and with observation of numerous half-buried boulders on the surface of this hill. We note that this study is the first to use topography and radargram data to estimate the relative permittivity of lunar surface uplifts, an approach that has had many successful applications on Mars. Similar approaches can apply other ground penetrating radar data for the Moon, such as will be available from the ongoing Chang'e-4 mission.

Key words: lunar penetrating radar, impact crater, ejecta deposits, Chang'e-3, permittivity, Moon

Carrier Ⅲ, W. D., Olhoeft, G. R., and Mendell, W. (1991). Physical Properties of the lunar Surface. Lunar Sourcebook: A User's Guide to the Moon, 475-594.Cambridge, England: Cambridge University Press.222

Carter, L. M., Campbell, B. A., Holt, J. W., Phillips, R. J., Putzig, N. E., Mattei, S., Seu, R., Okubo, C. H., and Egan, A. F. (2009a). Dielectric properties of lava flows west of Ascraeus Mons, Mars. Geophys. Res. Lett., 36(23), L23204. https://doi.org/10.1029/2009gl041234

Carter, L. M., Campbell, B. A., Watters, T. R., Phillips, R. J., Putzig, N. E., Safaeinili, A., Plaut, J. J., Okubo, C. H., Egan, A. F., … Orosei, R. (2009b). Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus, 199(2), 295–302. https://doi.org/10.1016/j.icarus.2008.10.007

Fa, W. Z., Zhu, M. H., Liu, T. T., and Plescia, J. B. (2015). Regolith stratigraphy at the Chang'E-3 landing site as seen by lunar penetrating radar. Geophys. Res. Lett., 42(23), 10179–10187. https://doi.org/10.1002/2015gl066537

Fa, W. Z, Liu, T. T, Zhu, M. H., and Haruyama, J. (2014). Regolith thickness over Sinus Iridum: Results from morphology and size-frequency distribution of small impact craters. J. Geophys. Res., 119(8), 1914–1935. https://doi.org/10.1002/2013JE004604

Fang, G. Y., Zhou, B., Ji, Y. C., Zhang, Q. Y., Shen, S. X., Li, Y. X., Guan, H. F., Tang, C. J., Gao, Y. Z., … Wang, S. Z. (2014). Lunar penetrating radar onboard the Chang'e-3 mission. Res. Astron. Astrophys., 14(12), 1607–1622. https://doi.org/10.1088/1674-4527/14/12/009

Feng, J. Q., Su, Y., Ding, C. Y., Xing, S. G., Dai, S., and Zou, Y. L. (2017). Dielectric properties estimation of the lunar regolith at CE-3 landing site using lunar penetrating radar data. Icarus, 284, 424–430. https://doi.org/10.1016/j.icarus.2016.12.005

Lai, J. L., Xu, Y., Zhang, X. P., and Tang, Z. S. (2016). Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar. Planet. Space Sci., 120, 96–102. https://doi.org/10.1016/j.pss.2015.10.014

Melosh, H. J. (1989). Impact Cratering: A Geologic Process. New York: Oxford Univ. Press.222

Olhoeft, G. R., Strangway, D. W. (1975). Dielectric properties of the first 100 meters of the Moon. Earth Planet. Sci. Lett., 24(3), 394–404. https://doi.org/10.1016/0012-821X(75)90146-6

Orosei, P., Rossi, A. P., Cantini, F., Caprarelli, G., Carter, L. M., Papiano, I., Cartacci, M., Cicchetti, A., and Noschese, R. (2017). Radar sounding of Lucus Planum, Mars, by MARSIS. J. Geophys. Res., 122(7), 1405–1418. https://doi.org/10.1002/2016je005232

Qiao, L., Xiao, Z. Y., Zhao, J. N., and Xiao, L. (2016). Subsurface structures at the Chang'e-3 landing site: interpretations from orbital and in-situ imagery data. J. Earth Sci., 27(4), 707–715. https://doi.org/10.1007/s12583-015-0655-3

Su, Y., Fang, G. Y., Feng, J. Q., Xing, S. G., Ji, Y. C., Zhou, B., Gao, Y. Z., Li, H., Dai, S., … Li, C. L. (2014). Data processing and initial results of Chang'e-3 lunar penetrating radar. Res. Astron. Astrophys., 14(12), 1623–1632. https://doi.org/10.1088/1674-4527/14/12/010

Ulaby, F. T., Moore, M. K., and Fung, A. K. (1986). Microwave Remote Sensing: Active and Passive, Vol 3. Norwood, Mass: Artech House.222

Watters, T. R., Campbell, B., Carter, L., Leuschen, C. J., Plaut, J. J, Picardi, G., Orosei, R., Safaeinili, A., Clifford, S. M., … Stofan, E. R. (2007). Radar sounding of the Medusae fossae formation mars: equatorial ice or dry, low-density deposits?. Science, 318(5853), 1125–1128. https://doi.org/10.1126/science.1148112

Xiao, L. (2014). China's touch on the Moon. Nat. Geosci., 7(6), 391–392. https://doi.org/10.1038/ngeo2175

Xiao, L., Zhu, P. M., Fang, G. Y, Xiao, Z. Y., Zou, Y. L., Zhao, J. N., Zhao, N., Yuan, Y. F, Qiao, L., … Gao, Y. Z. (2015). A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science, 347(6227), 1226–1229. https://doi.org/10.1126/science.1259866

[1]

Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031

[2]

XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005

[3]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[4]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[5]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics. doi: 10.26464/epp2020025

[6]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[7]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[8]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[9]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[10]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics. doi: 10.26464/epp2020013

[11]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tanlu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics. doi: 10.26464/epp2020026

[12]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A rocky hill on the continuous ejecta of Ziwei crater revealed by the Chang’e-3 mission

ChunYu Ding, YuZhen Cai, ZhiYong Xiao, Yan Su