Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Jin, Y. and Pang, Y. (2020). The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation. Earth Planet. Phys., 4(3), 223–230doi: 10.26464/epp2020013

2020, 4(3): 223-230. doi: 10.26464/epp2020013


The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation


Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China


School of Information Engineering, Nanchang University, Nanchang 330031, China

Corresponding author: Ye Pang,

Received Date: 2019-06-18
Web Publishing Date: 2020-05-01

One-dimensional hybrid simulations are carried out to study the plasma refilling process in the lunar wake. Previous theoretical and simulation studies have shown that ion-ion acoustic (ⅡA) instability can be initiated and electrostatic shock can be formed under the condition ${{T_{\rm e}}\gg {T_{\rm i}}}$. We find that the time evolution of ⅡA instability and the formation of electrostatic shock strongly depend on initial cavity density. The initial position of the electrostatic shock is dependent on the ratio between initial cavity density and background solar wind density, i.e., the farther away the initial position, the lower is the ratio. When the initial cavity density is low enough, the density and electric field profile across the wake become much complex. Meanwhile, the back-to-back electrostatic shock is unstable in the case of lower cavity densities; at the late evolution stage, a new shock-like structure can be formed at the central region of the lunar wake.

Key words: plasma refilling, ion-ion acoustic instability, Moon wake, electrostatic shock

Birch, P. C., and Chapman, S. C. (2001). Particle-in-cell simulations of the lunar wake with high phase space resolution. Geophys. Res. Lett., 28(2), 219–222.

Dusenbery, P. B., and Lyons, L. R. (1985). The generation of electrostatic noise in the plasma sheet boundary layer. J. Geophys. Res., 90(A11), 10935–10943.

Farrell, W. M., Kaiser, M. L., Steinberg, J. T., and Bale, S. D. (1998). A simple simulation of a plasma void: applications to Wind observations of the lunar wake. J. Geophys. Res., 103(A10), 23653–23660.

Gary, S. P., and Omidi, N. (1987). The ion-ion acoustic instability. J. Plasma Phys., 37(1), 45–67.

Grabbe, C. L., and Eastman, T. E. (1984). Generation of broadband electrostatic noise by ion beam instabilities in the magnetotail. J. Geophys. Res., 89(A6), 3865–3872.

Israelevich, P., and Ofman, L. (2012). Hybrid simulation of the shock wave trailing the Moon. J. Geophys. Res., 117(A8), A08223.

Karimabadi, H., Omidi, N., and Quest, K. B. (1991). Two-dimensional simulations of the ion/ion acoustic instability and electrostatic shocks. Geophys. Res. Lett., 18(10), 1813–1816.

Li, H. M., Pang, Y., Huang, S. Y., Zhou, M., Deng, X. H., Yuan, Z. G., Wang, D. D., and Li, H. M. (2013). The turbulence evolution in the high β region of the Earth's foreshock. J. Geophys. Res., 118(11), 7151–7159.

Michel, F. C. (1967). Shock wave trailing the moon. J. Geophys. Res., 72(9), 5508–5509.

Michel, F. C. (1968). Magnetic field structure behind the moon. J. Geophys. Res., 73(5), 1533–1542.

Schriver, D., and Ashour-Abdalla, M. (1990). Cold plasma heating in the plasma sheet boundary layer: theory and simulations. J. Geophys. Res., 95(A4), 3987–4005.

Wang, X. Y., and Lin, Y. (2003). Generation of nonlinear Alfvén and magnetosonic waves by beam-plasma interaction. Phys. Plasmas, 10(9), 3528–3538.

Zhou, M., Pang, Y., Deng, X. H., Huang, S. Y., and Lai, X. S. (2014). Plasma physics of magnetic island coalescence during magnetic reconnection. J. Geophys. Res., 119(8), 6177–6189.

Zhou, M., El-Alaoui, M., Lapenta, G., Berchem, J., Richard, R. L., Schriver, D., and Walker, R. J. (2018). Suprathermal electron acceleration in a reconnecting magnetotail: large-scale kinetic simulation. J. Geophys. Res., 123(10), 8087–8108.


Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020


FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022


ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049


XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001


Elizabeth A. Silber, 2018: Deployment of a short-term geophysical field survey to monitor acoustic signals associated with the Windsor Hum, Earth and Planetary Physics, 2, 351-358. doi: 10.26464/epp2018032

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation

Yuan Jin, Ye Pang