Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Fu, M. H., Cui, J., Wu, X. S., Wu, Z. P., and Li, J. (2020). The variations of the Martian exobase altitude. Earth Planet. Phys., 4(1), 1–7.doi: 10.26464/epp2020010

doi: 10.26464/epp2020010

PLANETARY SCIENCES

The variations of the Martian exobase altitude

1. 

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

2. 

School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China

4. 

Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230026, China

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2019-09-27
Web Publishing Date: 2020-02-01

The exobase is defined as the interface between the strongly collisional and the collisionless parts of an atmosphere. Although in reality the exobase is a transition region of finite depth, it is conventionally defined as the boundary above which an upwardly ejected neutral particle makes one collision at higher altitudes. Such an idealized definition is of practical use and serves as a good tracer of the overall size of an atmosphere as it expands and contracts under the influences of both external and internal sources. Knowledge of the atmospheric properties near the exobase is crucial to first-order estimates of atmospheric escape rates on terrestrial planets. Since its arrival at Mars on 21 September 2014, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has provided comprehensive maps of the Martian upper atmosphere under a variety of conditions. This allows, for the first time, a thorough investigation of the variations of the exobase altitude on this red planet. In this study, we use the N2 density measurements accumulated by MAVEN’s Neutral Gas and Ion Mass Spectrometer from October 2014 to November 2018 to determine the exobase altitudes for a large number of MAVEN orbits. Our analysis reveals clearly the variations of exobase altitude with local time and solar extreme ultraviolet (EUV) flux, as well as tentative evidence for the impact of global dust storms. These observations are indicative of thermal expansion of the Martian upper atmosphere, driven either externally by solar EUV energy deposition or internally by global dust storms.

Key words: Mars, Exobase, MAVEN

Bertaux, J. L., Korablev, O., Perrier, S., Quémerais, E., Montmessin, F., Leblanc, F., Lebonnois, S., Rannou, P., Lefèvre, F., … Guibert, S. (2006). SPICAM on Mars express: observing modes and overview of UV spectrometer data and scientific results. J. Geophys. Res.: Planets, 111(E10), E10S90. https://doi.org/10.1029/2006JE002690

Bougher, S., Jakosky, B., Halekas, J., Grebowsky, J., Luhmann, J., Mahaffy, P., Connerney, J., Eparvier, F., Ergun, R.,.. Yelle, R. (2015). Early MAVEN deep dip campaign reveals thermosphere and ionosphere variability. Science, 350(6261), aad0459. https://doi.org/10.1126/science.aad0459

Bougher, S. W., Murphy, J., and Haberle, R. M. (1997). Dust storm impacts on the Mars upper atmosphere. Adv. Space Res., 19(8), 1255–1260. https://doi.org/10.1016/S0273-1177(97)00278-0

Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (1999). Comparative terrestrial planet thermospheres: 2 Solar cycle variation of global structure and winds at equinox. J. Geophys. Res.: Planets, 104(E7), 16591–16611. https://doi.org/10.1029/1998JE001019

Bougher, S. W., McDunn, T. M., Zoldak, K. A., and Forbes, J. M. (2009). Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances. Geophys. Res. Lett., 36(5), L05201. https://doi.org/10.1029/2008GL036376

Bougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., Jain, S. K., Schneider, N. M., Deighan, J.,.. Jakosky, B. M. (2017). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res.: Space Phys., 122(1), 1296–1313. https://doi.org/10.1002/2016JA023454

Chamberlain, J. W. (1963). Planetary coronae and atmospheric evaporation. Planet. Space Sci., 11(8), 901–960. https://doi.org/10.1016/0032-0633(63)90122-3

Cui, J., Yelle, R. V., Vuitton, V., Waite Jr, J., Kasprzak, W., Gell, D. A., Niemann, H. B., Müller-Wodarg, I. C. F., Borggren, N., … Magee, B. A. (2009). Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus, 200(2), 581–615. https://doi.org/10.1016/j.icarus.2008.12.005

Cui, J., Yelle, R. V., Müller-Wodarg, I. C. F., Lavvas, P. P., and Galand, M. (2011). The implications of the H2 variability in Titan's exosphere. J. Geophys. Res.: Space Phys., 116(A11), A11324. https://doi.org/10.1029/2011JA016808

Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1-4), 293–301. https://doi.org/10.1007/s11214-015-0195-2

Fang, X. H., Bougher, S. W., Johnson, R. E., Luhmann, J. G., Ma, Y. J., Wang, Y. C., and Liemohn, M. W (2013). The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind condi-tions. Geophys. Res. Lett., 40(10), 1922–1927. https://doi.org/10.1002/grl.50415

Fox, J. L., Galand, M. I., and Johnson, R. E (2008). Energy deposition in planetary atmospheres by charged parti-cles and solar photons. Space Sci. Rev., 139(1-4), 3–62. https://doi.org/10.1007/s11214-008-9403-7

Gurwell, M. A., Bergin, E. A., Melnick, G. J., and Tolls, V (2005). Mars surface and atmospheric temperature during the 2001 global dust storm. Icarus, 175(1), 23–31. https://doi.org/10.1016/j.icarus.2004.10.009

Guzewich, S. D., Lemmon, M., Smith, C. L., Martínez, G., De Vicente‐Retortillo, Á., Newman, C. E., Campbell, B. C., Cooper, B., Gómez-Elvira, J., … Mier, M. P. Z. (2019). Mars science laboratory observations of the 2018/mars year 34 global dust storm. Geophys. Res. Lett., 46(1), 71–79. https://doi.org/10.1029/2018GL080839

Haberle, R. M., Leovy, C. B., and Pollack, J. B. (1982). Some effects of global dust storms on the atmospheric circulation of Mars. Icarus, 50(2-3), 322–367. https://doi.org/10.1016/0019-1035(82)90129-4

Hantsch, M. H., and Bauer, S. J (1990). Solar control of the Mars ionosphere. Planet. Space Sci., 38(4), 539–542. https://doi.org/10.1016/0032-0633(90)90146-H

Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. N., Chaffin, M. S., Crismani, M., … Jakosky, B. M. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett., 42(21), 9023–9030. https://doi.org/10.1002/2015GL065419

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mis-sion to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271

Johnson, R. E., Combi, M. R., Fox, J. L., Ip, W. H., Leblanc, F., McGrath, M., Shematovich, V. I., Strobel, D. F., and Waite Jr, J. H. (2008). Exospheres and atmospheric escape. In A. F. Nagy, et al. (Eds.), Comparative Aeronomy (pp. 355–397). New York: Springer. https://doi.org/10.1007/978-0-387-87825-6_10222

Kass, D. M., Kleinböhl, A., McCleese, D. J., Schofield, J. T., and Smith, M. D. (2016). Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett., 43(12), 6111–6118. https://doi.org/10.1002/2016GL068978

Krasnopolsky, V. A. (2010). Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere. Icarus, 207(2), 638–647. https://doi.org/10.1016/j.icarus.2009.12.036

Liemohn, M. W., Dupre, A., Bougher, S. W., Trantham, M., Mitchell, D. L., and Smith, M. D. (2012). Time-history influence of global dust storms on the upper atmosphere at Mars. Geophys. Res. Lett., 39(11), L11201. https://doi.org/10.1029/2012GL051994

Lillis, R. J., Deighan, J., Fox, J. L., Bougher, S. W., Lee, Y., Combi, M. R., Cravens, T. E., Rahmati, A., Mahaffy, P. R., … Chaufray, J. Y. (2017). Photochemical escape of oxygen from Mars: first results from MAVEN in situ data. J. Geophys. Res.: Space Phys., 122(3), 3815–3836. https://doi.org/10.1002/2016JA023525

Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015a). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329

Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., … Hengemihle, J. (2015b). The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Sci. Rev., 195(1-4), 49–73. https://doi.org/10.1007/s11214-014-0091-1

Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E.,.. Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1-4), 495–528. https://doi.org/10.1007/s11214-015-0232-1

Nier, A. O., and McElroy, M. B (1976). Structure of the neutral upper atmosphere of Mars: results from Viking 1 and Viking 2. Science, 194(4271), 1298–1300. https://doi.org/10.1126/science.194.4271.1298

Nier, A. O., and McElroy, M. B (1977). Composition and structure of Mars' upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res., 82(28), 4341–4349. https://doi.org/10.1029/JS082i028p04341

Pollack, J. B., Colburn, D. S., Flasar, F. M., Kahn, R., Carlston, C. E., and Pidek, D (1979). Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res.: Solid Earth, 84(B6), 2929–2945. https://doi.org/10.1029/JB084iB06p02929

Sánchez‐Lavega, A., Del Río‐Gaztelurrutia, T., Hernández‐Bernal, J., and Delcroix, M (2019). The onset and growth of the 2018 Martian Global Dust Storm. Geophys. Res. Lett., 46(11), 6101–6108. https://doi.org/10.1029/2019GL083207

Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., and Mahaffy, P. R (2018). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. J. Geophys. Res.: Planets, 123(11), 2842–2867. https://doi.org/10.1029/2018JE005559

Strausberg, M. J., Wang, H. Q., Richardson, M. I., Ewald, S. P., and Toigo, A. D (2005). Observations of the ini-tiation and evolution of the 2001 Mars global dust storm. J. Geophys. Res.: Planets, 110(E2), E02006. https://doi.org/10.1029/2004JE002361

Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res.: Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512

Wang, J. S., and Nielsen, E (2003). Behavior of the Martian dayside electron density peak during global dust storms. Planet. Space Sci., 51(4-5), 329–338. https://doi.org/10.1016/S0032-0633(03)00015-1

Withers, P. (2006). Mars Global Surveyor and Mars Odyssey Accelerometer observations of the Martian upper atmosphere during aerobraking. Geophys. Res. Lett., 33(2), L02201. https://doi.org/10.1029/2005GL02444

Xu, S. S., Liemohn, M. W., Mitchell, D. L., and Smith, M. D (2014). Mars photoelectron energy and pitch angle dependence on intense lower atmospheric dust storms. J. Geophys. Res.: Planets, 119(7), 1689–1706. https://doi.org/10.1002/2013JE004594

Zurek, R. W., Tolson, R. H., Baird, D., Johnson, M. Z., and Bougher, S. W (2015). Application of MAVEN ac-celerometer and attitude control data to Mars atmospheric characterization. Space Sci. Rev., 195(1-4), 303–317. https://doi.org/10.1007/s11214-014-0095-x

[1]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics. doi: 10.26464/epp2020009

[2]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics. doi: 10.26464/epp2020008

[3]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[4]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[5]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[6]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[7]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics. doi: 10.26464/epp2020002

[8]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The variations of the Martian exobase altitude

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li