Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Guo, J., Wimmer-Schweingruber, R. F., Dumbović, M., Heber, B., and Wang, Y. M. (2020). A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence. Earth Planet. Phys., 4(1), 62–72.doi: 10.26464/epp2020007

2020, 4(1): 62-72. doi: 10.26464/epp2020007


A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence


School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China


Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China


Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, DE 24118, Germany


Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia

Corresponding author: Jingnan Guo,

Received Date: 2019-10-16
Web Publishing Date: 2020-01-01

Forbush decreases are depressions in the galactic cosmic rays (GCRs) that are caused primarily by modulations of interplanetary coronal mass ejections (ICMEs) but also occasionally by stream/corotating interaction regions (SIRs/CIRs). Forbush decreases have been studied extensively using neutron monitors at Earth; recently, for the first time, they have been measured on the surface of another planet, Mars, by the Radiation Assessment Detector (RAD) on board the Mars Science Laboratory’s (MSL) rover Curiosity. The modulation of GCR particles by heliospheric transients in space is energy-dependent; afterwards, these particles interact with the Martian atmosphere, the interaction process depending on particle type and energy. In order to use ground-measured Forbush decreases to study the space weather environment near Mars, it is important to understand and quantify the energy-dependent modulation of the GCR particles by not only the pass-by heliospheric disturbances but also by the Martian atmosphere. Accordingly, this study presents a model that quantifies — both at the Martian surface and in the interplanetary space near Mars — the amplitudes of Forbush decreases at Mars during the pass-by of an ICME/SIR by combining the heliospheric modulation of GCRs with the atmospheric modification of such modulated GCR spectra. The modeled results are in good agreement with measurements of Forbush decreases caused by ICMEs/SIRs based on data collected by MSL on the surface of Mars and by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in orbit. Our model and these findings support the validity of both the Forbush decrease description and Martian atmospheric transport models.

Key words: ICME and Forbush decreases, space weather at Mars, Mars: atmosphere, GCR radiation

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, A., Axen, D., Adriani, O ., Barbarino, G. C., Bazilevskaya, G. A ., Bellotti, R., Boezio, M., Bogomolov, E. A., Bonechi, L., Bongi, M., Bonvicini, V., .. Zverev, V. G. (2011). PAMELA measurements of cosmic-ray proton and Helium spectra. Science, 332(6025), 69–72.

Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., .. others. (2003). Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303.

Aguilar, M., Ali Cavasonza, L., Alpat, B., Ambrosi, G., Arruda, L., Attig, N., Aupetit, S., Azzarello, P., Bachlechner, A., .. Zuccon, P. (2018). Observation of fine time structures in the cosmic proton and helium fluxes with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 121(5), 051101.

Appel, J. K., Köhler, J., Guo, J., Ehresmann, B., Zeitlin, C., Matthiä, D., Lohf, H., Wimmer-Schweingruber, R. F., Hassler, D., .. Weigle, G. (2018). Detecting upward directed charged particle fluxes in the mars science laboratory radiation assessment detector. Earth Space Sci., 5(1), 2–18.

Arunbabu, K. P., Antia, H. M., Dugad, S. R., Gupta, S. K., Hayashi, Y., Kawakami, S., Mohanty, P. K., Oshima, A., and Subramanian, P. (2015). How are Forbush decreases related to interplanetary magnetic field enhancements?. Astron. Astrophys., 580, A41.

Belov, A. (2008). Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. Proc. Int. Astron. Union, 4(S257), 439–450.

Cane, H. V. (2000). Coronal mass ejections and Forbush decreases. Space Sci. Rev., 93(1-2), 55–77.

Clem, J. M., and Dorman, L. I. (2000). Neutron monitor response functions. Space Sci. Rev., 93(1-2), 335–359.

Corti, C., Bindi, V., Consolandi, C., and Whitman, K. (2016). Solar modulation of the local interstellar spectrum with Voyager 1, AMS-02, PAMELA, and BESS. The Astrophys. J., 829(1), 8.

Dasso, S., Asorey, H., and For The Pierre Auger Collaboration. (2012). The scaler mode in the Pierre Auger Observatory to study heliospheric modulation of cosmic rays. Adv. Space Res., 49(11), 1563–1569.

Démoulin, P., and Dasso, S. (2009). Causes and consequences of magnetic cloud expansion. Astronomy & Astrophysics, 498(551).

Dumbović, M., Heber, B., Vršnak, B., Temmer, M., and Kirin, A. (2018). An analytical diffusion-expansion model for forbush decreases caused by flux ropes. The Astrophys. J., 860(1), 71.

Ehresmann, B., Zeitlin, C., Hassler, D. M., Wimmer-Schweingruber, R. F., Böhm, E., Böttcher, S., Brinza, D. E., Burmeister, S., Guo, J. N., .. Reitz, G. (2014). Charged particle spectra obtained with the mars science laboratory radiation assessment detector (MSL/RAD) on the surface of mars. J. Geophys. Res.: Planets, 119(3), 468–479.

Feldman, W. C., Ahola, K., Barraclough, B. L., Belian, R. D., Black, R. K., Elphic, R. C., Everett, D. T., Fuller, K. R., Kroesche, J., .. Thornton, G. W. (2004). Gamma-ray, neutron, and alpha-particle spectrometers for the lunar prospector mission. J. Geophys. Res.: Planets, 109(E7), E07S06.

Forbush, S. E. (1937). On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev., 51(12), 1108–1109.

Freiherr von Forstner, J. L., Guo, J., Wimmer-Schweingruber, R. F., Hassler, D. M., Temmer, M., Dumbović, M., … Zeitlin, C. J. (2018). Using Forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars. Journal of Geophysical Research: Space Physics, 123, 39–56.

Freiherr von Forstner, J. L., Guo, J., Wimmer-Schweingruber, R. F., Temmer, M., Dumbović, M., Veronig, A., Möstl, C., Hassler, D. M., Zeitlin, C. J., and Ehresmann, B. (2019). Tracking and validating ICMEs propagating toward Mars using STEREO Heliospheric Imagers combined with Forbush decreases detected by MSL/RAD. Space Weather, 17(4), 586–598.

Gieseler, J., Heber, B., and Herbst, K. (2017). An empirical modification of the force field approach to describe the modulation of galactic cosmic rays close to earth in a broad range of rigidities. J. Geophys. Res.: Space Phys., 122(11), 10964–10979.

Guo, J. N., Slaba, T. C., Zeitlin, T., Wimmer-Schweingruber, R. F., Badavi, F. F., Böhm, E., Böttcher, S., Brinza, D. E., Ehresmann, B.,.. Rafkin, S. (2017). Dependence of the Martian radiation environment on atmospheric depth: modeling and measurement. J. Geophys. Res.: Planets, 122(2), 329–341.

Guo, J. N., Zeitlin, C., Wimmer-Schweingruber, R., Hassler, D. M., Köhler, J., Ehresmann, B., Böttcher, S., Böhm, E., and Brinza, D. E. (2017). Measurements of the neutral particle spectra on mars by MSL/RAD from 2015-11-15 to 2016-01-15. Life Sci. Space Res., 14, 12–17.

Guo, J. N., Lillis, R., Wimmer-Schweingruber, R. F., Zeitlin, C., Simonson, P., Rahmati, A., Posner, A., Papaioannou, A., Lundt, N.,.. Böttcher, S. (2018). Measurements of Forbush decreases at mars: both by MSL on ground and by maven in orbit. Astron. Astrophys., 611, A79.

Guo, J. N., Zeitlin, C., Wimmer-Schweingruber, R. F., McDole, T., Kühl, P., Appel, J. C., Matthiä, D., Krauss, J., and Köhler, J. (2018). A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of mars. The Astrophys. J., 155(1), 49.

Guo, J. N., Banjac, S., Röstel, L., Terasa, J. C., Herbst, K., Heber, B., and Wimmer-Schweingruber, R. F. (2019). Implementation and validation of the GEANT4/AtRIS code to model the radiation environment at Mars. J. Space Wea. Space Climate, 9, A2.

Guo, J. N., Wimmer-Schweingruber, R. F., Grande, M., Lee-Payne, Z. H., and Matthiä, D. (2019). Ready functions for calculating the Martian radiation environment. J. Space Wea. Space Climate, 9, A7.

Haberle, R. M., Gómez-Elvira, J., de la Torre Juárez, M., Harri, A. M., Hollingsworth, J. L., Kahanpää, H., Kahre, M. A., Lemmon, M., Martín-Torres, F. J., … REMS/MSL Science Teams. (2014). Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J. Geophys. Res.: Planets, 119(3), 440–453.

Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Böttcher, S., Martin, C., Andrews, J., . . Cucinotta, F. A. (2012). The Radiation Assessment Detector (RAD) Investigation. Space Science Reviews, 170(1–4), 503–558.

Kadokura, A., and Nishida, A. (1986). Numerical modeling of the 22-year variation of the cosmic ray intensity and anisotropy. J. Geophys. Res.: Space Phys., 91(A1), 1–11.

Köhler, J., Zeitlin, C., Ehresmann, B., Wimmer-Schweingruber, R., Hassler, D. M., Reitz, G., Brinza, D. E., Weigle, G., Appel, J.,.. Kortmann, O. (2014). Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J. Geophys. Res.: Planets, 119(3), 594–603.

Larson, D. E., Lillis, R. J., Lee, C. O., Dunn, P. A., Hatch, K., Robinson, M., Glaser, D., Chen, J. X., Curtis, D.,.. Jakosky, B. M. (2015). The MAVEN solar energetic particle investigation. Space Sci. Rev., 195(1-4), 153–172.

Lewis, S. R., Collins, M., Read, P. L., Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., and Huot, J. P. (1999). A climate database for Mars. J. Geophys. Res.: Planets, 104(E10), 24177–24194.

Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., and Abunina, M. (2016). Solar activity parameters and associated Forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24. Solar Phys., 291(3), 1025–1041.

Luo, X., Potgieter, M. S., Zhang, M., and Feng, X. S. (2017). A numerical study of Forbush decreases with a 3D cosmic-ray modulation model based on an SDE approach. The Astrophys. J., 839(1), 53.

Luo, X., Potgieter, M. S., Zhang, M., and Feng, X. S. (2018). A study of electron Forbush decreases with a 3D SDE numerical model. The Astrophys. J., 860(2), 160.

Matthiä, D., Ehresmann, B., Lohf, H., Köhler, J., Zeitlin, C., Appel, J., Sato, T., Slaba, T., Martin, C.,.. Wimmer-Schweingruber, R. F. (2016). The Martian surface radiation environment-a comparison of models and MSL/RAD measurements. J. Space Wea. Space Climate, 6, A13.

Melkumyan, A. A., Belov, A. V., Abunina, M. A., Abunin, A. A., Eroshenko, E. A., Yanke, V. G., and Oleneva, V. A. (2019). Comparison between statistical properties of Forbush decreases caused by solar wind disturbances from coronal mass ejections and coronal holes. Adv. Space Res., 63(2), 1100–1109.

Moraal, H. (2013). Cosmic-ray modulation equations. Space Sci. Rev., 176(1-4), 299–319.

Möstl, C., Rollett, T., Frahm, R. A., Liu, Y. D., Long, D. M., Colaninno, R. C., … Vršnak, B. (2015). Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nature Communications, 6, 7135.

Munini, R., Boezio, M., Bruno, A., Christian, E. C., de Nolfo, G. A., Di Felice, V., Martucci, M., Merge, M., Richardson, I. G.,.. Potgieter, M. S. (2018). Evidence of energy and charge sign dependence of the recovery time for the 2006 December Forbush event measured by the PAMELA experiment. Astrophys. J., 853, 76.

Paizis, C., Heber, B., Ferrando, P., Raviart, A., Falconi, B., Marzolla, S., Potgieter, M. S., Bothmer, V., Kunow, H.,.. Posner, A. (1999). Amplitude evolution and rigidity dependence of the 26-day recurrent cosmic ray decreases: COSPIN/KET results. J. Geophys. Res.: Space Phys., 104(A12), 28241–28247.

Parker, E. N. (1965). The passage of energetic charged particles through interplanetary space. Planet. Space Sci., 13(1), 9–49.

Papaioannou, A., Belov, A. V., Abunina, M., Guo, J., Anastasiadis, A., Wimmer-Schweingruber, R. F., … Steigies, C. T. (2019). A catalogue of forbush decreases recorded on the surface of mars from 2012 until 2016: Comparisonwith terrestrial fds. Solar Physics, 294(6), 66.

Rafkin, S. C. R., Zeitlin, C., Ehresmann, B., Hassler, D., Guo, J. N., Köhler, J., Wimmer-Schweingruber, R., Gomez-Elvira, J., Harri, A. M.,.. the MSL Science Team. (2014). Diurnal variations of energetic particle radiation at the surface of mars as observed by the mars science laboratory radiation assessment detector. J. Geophys. Res.: Planets, 119(6), 1345–1358.

Richardson, I. G., Cane, H. V., and Wibberenz, G. (1999). A 22-year dependence in the size of near-ecliptic corotating cosmic ray depressions during five solar minima. J. Geophys. Res.: Space Phys., 104(A6), 12549–12561.

Richardson, I. G. (2004). Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev., 111(3-4), 267–376.

Simpson, J. A. (1983). Elemental and isotopic composition of the galactic cosmic rays. Ann. Rev. Nucl. Part. Sci., 33, 323–382.

Usoskin, I. G., Braun, I., Gladysheva, O. G., Hörandel, J. R., Jämsén, T., Kovaltsov, G. A., and Starodubtsev, S. A. (2008). Forbush decreases of cosmic rays: energy dependence of the recovery phase. J. Geophys. Res.: Space Phys., 113(A7), A07102.

Usoskin, I. G., Bazilevskaya, G. A., and Kovaltsov, G. A. (2011). Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res.: Space Phys., 116(A2), A02104.

Usoskin, I. G., Kovaltsov, G. A., Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bogomolov, E.A., Bongi, M.,.. Zverev, V. G. (2015). Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases. Adv. Space Res., 55(12), 2940–2945.

Wang, Y. M., Shen, C. L., Liu, R., Liu, J. J., Guo, J. N., Li, X. L., Xu, M. J., Hu, Q., Zhang, T. L. (2018). Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud. Journal of Geophysical Research: Space Physics, 123, 3238–3261.

Wibberenz, G., le Roux, J. A., Potgieter, M. S., and Bieber, J. W. (1998). Transient effects and disturbed conditions. Space Sci. Rev., 83(1), 309–348.

Winslow, R. M., Schwadron, N. A., Lugaz, N., Guo, J. N., Joyce, C. J., Jordan, A. P., Wilson, J. K., Spence, H. E., Lawrence, D. J.,.. Mays, M. L. (2018). Opening a window on ICME-driven GCR modulation in the inner solar system. The Astrophys. J., 856(2), 139.

Witasse, O., Sánchez-Cano, B., Mays, M., Kajdič, P., Opgenoorth, H., Elliott, H. A., Richardson, I. G., Zouganelis, I., Zender, J.,.. Altobelli, N. (2017). Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and new horizons en route to Pluto: comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. J. Geophys. Res.: Space Phys., 122(8), 7865–7890.


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002


YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008


Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006


XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038


TianJun Zhou, 2019: Toward better watching of the deep atmosphere over East Asia, Earth and Planetary Physics, 3, 85-86. doi: 10.26464/epp2019010


Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing. Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 0: Observation of CO2 ++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics. doi: 10.26464/epp2020036


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang