Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Li, S. B., Lu, H. Y., Cui, J., Yu, Y. Q., Mazelle, C., Li, Y., and Cao, J. B. (2020). Effects of a dipole-like crustal field on solar wind interaction with Mars. Earth Planet. Phys., 4(1), 23–31.doi: 10.26464/epp2020005

2020, 4(1): 23-31. doi: 10.26464/epp2020005


Effects of a dipole-like crustal field on solar wind interaction with Mars


School of Space and Environment, Beihang University, Beijing 100191, China


Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100191, China


School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China


CNRS, Institute de Recherche en Astrophysique et Planétologie, Toulouse, France

Corresponding author: HaoYu Lu,

Received Date: 2019-10-27
Web Publishing Date: 2020-01-01

A three-dimensional four species multi-fluid magnetohydrodynamic (MHD) model was constructed to simulate the solar wind global interaction with Mars. The model was augmented to consider production and loss of the significant ion species in the Martian ionosphere, i.e., H+, O2+, O+, CO2+, associated with chemical reactions among all species. An ideal dipole-like local crustal field model was used to simplify the empirically measured Martian crustal field. Results of this simulation suggest that the magnetic pile-up region (MPR) and the velocity profile in the meridian plane are asymmetric, which is due to the nature of the multi-fluid model to decouple individual ion velocity resulting in occurrence of plume flow in the northern Martian magnetotail. In the presence of dipole magnetic field model, boundary layers, such as bow shock (BS) and magnetic pile-up boundary (MPB), become protuberant. Moreover, the crustal field has an inhibiting effect on the flux of ions escaping from Mars, an effect that occurs primarily in the region between the terminator (SZA 90°) and the Sun–Mars line of the magnetotail (SZA 180°), partially around the terminator region. In contrast, near the tailward central line the crustal field has no significant impact on the escaping flux.

Key words: solar wind interaction with Mars, global MHD simulation, crustal field, escape flux

Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Reme, H., … Cloutier, P. (1999). Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment. Science, 284(5415), 790–793.

Bertucci, C., Mazelle, C., Crider, D. H., Vignes, D., Acuña, M. H., Mitchell, D. L., Lin, R. P., Connerney, J. E. P., Rème, H., … Winterhalter, D. (2003a). Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars Global Surveyor observations. Geophys. Res. Lett., 30(2), 1099.

Bertucci, C., Mazelle, C., Slavin, J. A., Russell, C. T., and Acuña, M. H. (2003b). Magnetic field draping enhancement at Venus: evidence for a magnetic pileup boundary. Geophys. Res. Lett., 30(17), 1876.

Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (2000). Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res., 105(E7), 17669–17692.

Brecht, S. H., and Ledvina, S. A. (2012). Control of ion loss from Mars during solar minimum. Earth Planets Space, 64(2), 12.

Brecht, S. H., and Ledvina, S. A. (2014). The role of the Martian crustal magnetic fields in controlling ionospheric loss. Geophys. Res. Lett., 41(15), 5340–5346.

Cain, J. C., Ferguson, B. B., and Mozzoni, D. (2003). An n = 90 internal potential function of the Martian crustal magnetic field. J. Geophys. Res., 108(E2), 5008.

Chassefière, E., and Leblanc, F. (2004). Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci., 52(11), 1039–1058.

Cravens, T. E., Hamil, O., Houston, S., Bougher, S., Ma, Y., Brain, D., and Ledvina, S. (2017). Estimates of ionospheric transport and ion loss at Mars. J. Geophys. Res., 122(10), 10626–10637.

Crider, D. H., Acuña, M. H., Connerney, J. E. P., Vignes, D., Ness, N. F., Krymskii, A. M., Breus, T. K., Rème, H., Mazelle, C., … Winterhalter, D. (2002). Observations of the latitude dependence of the location of the Martian magnetic pileup boundary. Geophys. Res. Lett., 29(8), 1170.

DiBraccio, G. A., Luhmann, J. G., Curry, S. M., Espley, J. R., Xu, S. S., Mitchell, D. L., Ma, Y. J., Dong, C. F., Gruesbeck, J. R., … Jakosky, B. M. (2018). The twisted configuration of the Martian magnetotail: MAVEN observations. Geophys. Res. Lett., 45(10), 4559–4568.

Dong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Nagy, A. F., and Najib, D. (2014). Solar wind interaction with Mars upper atmosphere: results from the one-way coupling between the multifluid MHD model and the MTGCM model. Geophys. Res. Lett., 41(8), 2708–2715.

Dong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Lee, Y., Nagy, A. F., Tenishev, V., Pawlowski, D. J., Combi, M. R., and Najib, D. (2015). Solar wind interaction with the Martian upper atmosphere: crustal field orientation, solar cycle, and seasonal variations. J. Geophys. Res., 120(9), 7857–7872.

Dong, C. F., Lee, Y., Ma, Y. J., Lingam, M., Bougher, S., Luhmann, J., Curry, S., Toth, G., Nagy, A., … Jakosky, B. (2018). Modeling Martian atmospheric losses over time: implications for exoplanetary climate evolution and habitability. Astrophys. J. Lett., 859(1), L14.

Dong, H. T., Zhang, L. D., and Lee, C. H. (2002). High order discontinuity decomposition entropy condition schemes for Euler equations. Comput. Fluid Dyn. J., 10(4), 563–568.

Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., Curry, S. M., Harada, Y., Luhmann, J. G., and Jakosky, B. M. (2015). Strong plume fluxes at Mars observed by MAVEN: an important planetary ion escape channel. Geophys. Res. Lett., 42(21), 8942–8950.

Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Eparvier, F., Andersson, L., Mitchell, D., and Jakosky, B. M. (2017). Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. J. Geophys. Res., 122(4), 4009–4022.

Dubinin, E., Modolo, R., Fraenz, M., Woch, J., Duru, F., Akalin, F., Gurnett, D., Lundin, R., Barabash, S., … Picardi, G. (2008). Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations. Geophys. Res. Lett., 35(11), L11103.

Dubinin, E., Fraenz, M., Pätzold, M., Andrews, D., Vaisberg, O., Zelenyi, L., and Barabash, S. (2017). Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes. Planet. Space Sci., 145.

Edberg, N. J. T., Lester, M., Cowley, S. W. H., and Eriksson, A. I. (2008). Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields. J. Geophys. Res., 113(A8), A08206.

Fang, X. H., Liemohn, M. W., Nagy, A. F., Ma, Y. J., de Zeeuw, D. L., Kozyra, J. U., and Zurbuchen, T. H. (2008). Pickup oxygen ion velocity space and spatial distribution around Mars. J. Geophys. Res., 113(A2), A02210.

Fang, X. H., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., and Ma, Y. J. (2010). On the effect of the Martian crustal magnetic field on atmospheric erosion. Icarus, 206(1), 130–138.

Fang, X. H., Ma, Y. J., Brain, D., Dong, Y. X., and Lillis, R. (2015). Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time-dependent MHD study. J. Geophys. Res., 120(12), 10926–10944.

Fang, X. H., Ma, Y. J., Masunaga, K., Dong, Y. X., Brain, D., Halekas, J., Lillis, R., Jakosky, B., Connerney, J., … Dong C. F. (2017). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. J. Geophys. Res., 122(4), 4117–4137.

Fang, X. H., Ma, Y. J., Luhmann, J., Dong, Y. X., Brain, D., Hurley, D., Dong, C. F., Lee, C. O., and Jakosky, B. (2018). The morphology of the solar wind magnetic field draping on the dayside of Mars and its variability. Geophys. Res. Lett., 45(8), 3356–3365.

Fox, J. L., and Hác, A. B. (2014). The escape of O from Mars: sensitivity to the elastic cross sections. Icarus, 228, 375–385.

Fränz, M., Dubinin, E., Andrews, D., Barabash, S., Nilsson, H., and Fedorov, A. (2015). Cold ion escape from the Martian ionosphere. Planet. Space Sci., 119, 92–102.

Gruesbeck, J. R., Espley, J. R., Connerney, J. E. P., DiBraccio, G. A., Soobiah Y. I., Brain, D., Mazelle, C., Dann, J., Halekas, J., and Mitchell, D. L. (2018). The three-dimensional bow shock of Mars as observed by MAVEN. J. Geophys. Res., 123(6), 4542–4555.

Hall, B. E. S., Lester, M., Sánchez-Cano, B., Nichols, J. D., Andrews, D. J., Edberg, N. J. T., Opgenoorth, H. J., Fränz, M., Holmström, M., … Orosei, R. (2016). Annual variations in the Martian bow shock location as observed by the Mars Express mission. J. Geophys. Res., 121(11), 11474–11494.

Hall, B. E. S., Sánchez-Cano, B., Wild, J. A., Lester, M., and Holmstrom, M. (2019). The Martian bow shock over solar cycle 23–24 as observed by the Mars Express mission. J. Geophys. Res., 124(6), 4761–4772.

Harnett, E. M., and Winglee, R. M. (2006). Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. J. Geophys. Res, 111(A9), A09213.

Harnett, E. M., and Winglee, R. M. (2007). High-resolution multifluid simulations of the plasma environment near the Martian magnetic anomalies. J. Geophys. Res, 112(A5), A05207.

Holmberg, M. K. G., André, N., Garnier, P., Modolo, R., Andersson, L., Halekas, J., Mazelle, C., Steckiewicz, M., Génot, V., … Mitchell, D. L. (2019). MAVEN and MEX multi‐instrument study of the dayside of the Martian induced magnetospheric structure revealed by pressure analyses. J. Geophys. Res.

Johnson, R. E., and Leblanc, F. (2001). The physics and chemistry of sputtering by energetic plasma ions. In: N. Meyer-Vernet, et al. (Eds.), Physics of Space: Growth Points and Problems. Dordrecht: Springer.

Kallio, E., Fedorov, A., Budnik, E., Säles, T., Janhunen, P., Schmidt, W., Koskinen, H., Riihelä, P., Barabash, S., … Dierker, C. (2006). Ion escape at Mars: comparison of a 3-D hybrid simulation with Mars Express IMA/ASPERA-3 measurements. Icarus, 182(2), 350–359.

Lasue, J., Mangold, N., Hauber, E., Clifford, S., Feldman, W., Gasnault, O., Grima, C., Maurice, S., and Mousis, O. (2013). Quantitative assessments of the Martian hydrosphere. Space Sci. Rev., 174(1-4), 155–212.

Ledvina, S. A., Ma, Y. J., and Kallio, E. (2008). Modeling and simulating flowing plasmas and related phenomena. Space Sci. Rev., 139(1-4), 143–189.

Liemohn, M. W., Ma, Y., Nagy, A. F., Kozyra, J. U., Winningham, J. D., Frahm, R. A., Sharber, J. R., Barabash, S., and Lundin, R. (2007). Numerical modeling of the magnetic topology near Mars auroral observations. Geophys. Res. Lett., 34(24), L24202.

Lillis, R. J., Brain, D. A., Bougher, S. W., Leblanc, F., Luhmann, J. G., Jakosky, B. M., Modolo, R., Fox, J., Deighan, J., … Lin, R. P. (2015). Characterizing atmospheric escape from mars today and through time, with MAVEN. Space Sci. Rev., 195(1-4), 357–422.

Lillis, R. J., Mitchell, D. L., Steckiewicz, M., Brain, D., Xu, S. S., Weber, T., Halekas, J., Connerney, J., Espley, J., … Eparvier, F. (2018). Ionizing electrons on the Martian nightside: structure and variability. J. Geophys. Res., 123(5), 4349–4363.

Ma, Y. J., Nagy, A. F., Sokolov, I. V., and Hansen, K. C. (2004). Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res., 109(A7), A07211.

Ma, Y. J., Altwegg, K., Breus, T., Combi, M. R., Cravens, T. E., Kallio, E., Ledvina, S. A., Luhmann, J. G., Miller, S., … Strobel, D. F. (2008). Plasma flow and related phenomena in planetary Aeronomy. Space Sci. Rev., 139(1-4), 311–353.

Ma, Y. J., Fang, X. H., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., Brain, D. A., and Dong, C. F. (2014a). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophys. Res. Lett., 41(19), 6563–6569.

Ma, Y. J., Fang, X., Nagy, A. F., Russell, C. T., and Toth, G. (2014b). Martian ionospheric responses to dynamic pressure enhancements in the solar wind. J. Geophys. Res., 119(2), 1272–1286.

Ma, Y. J., Russell, C. T., Fang, X., Dong, Y., Nagy, A. F., Toth, G., Halekas, J. S., Connerney, J. E. P., Espley, J. R., … Jakosky, B. M. (2015). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophys. Res. Lett., 42(21), 9113–9120.

Ma, Y. J., Russell, C. T., Toth, G., Chen, Y. X., Nagy, A. F., Harada, Y., McFadden, J., Halekas, J. S., Lillis, R., … Jakosky, B. M. (2018). Reconnection in the Martian magnetotail: hall-MHD with embedded particle-in-cell simulations. J. Geophys. Res., 123(5), 3742–3763.

Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J. G., Acuña, M. H., Baumgärtel, K., Bertucci, C., Brain, D. A., Brecht, S. H., … Slavin, J. (2004). Bow shock and upstream phenomena at mars. Space Sci. Rev., 111(1-2), 115–181.

Morschhauser, A., Lesur, V., and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res., 119(6), 1162–1188.

Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, A., … Trotignon, J. G. (2004). The plasma environment of mars. Space Sci. Rev., 111(1-2), 33–114.

Najib, D., Nagy, A. F., Tóth, G., and Ma, Y. J. (2011). Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. J. Geophys. Res., 116(A5), A05204.

Nilsson, H., Edberg, N. J. T., Stenberg, G., Barabash, S., Holmström, M., Futaana, Y., Lundin, R., and Fedorov, A. (2011). Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus, 215(2), 475–484.

Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and Acuña, M. (2000). An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett., 27(16), 2449–2452.

Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Halekas, J. S., McFadden, J. P., Dunn, P. A., Mitchell, D. L., Thiemann, E. M. B., … Jakosky, B. M. (2017). MAVEN measured oxygen and hydrogen pickup ions: probing the Martian exosphere and neutral escape. J. Geophys. Res., 122(3), 3689–3706.

Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Thiemann, E. M. B., Connerney, J. E. P., … Jakosky, B. M. (2018). Seasonal variability of neutral escape from Mars as derived from MAVEN pickup ion observations. J. Geophys. Res., 123(5), 1192–1202.

Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H., and Holmström, M. (2016). Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate. Geophys. Res. Lett., 43(20), 10574–10579.

Regoli, L. H., Dong, C., Ma, Y., Dubinin, E., Manchester, W. B., Bougher, S. W., and Welling, D. T. (2018). Multispecies and multifluid MHD approaches for the study of ionospheric escape at Mars. J. Geophys. Res., 123(9), 7370–7383.

Schunk, R., and Nagy, A. (2009). Ionospheres (2nd ed.). New York: Cambridge University Press.222

Simon, S., Boesswetter, A., Bagdonat, T., and Motschmann, U. (2007). Physics of the ion composition boundary: a comparative 3-D hybrid simulation study of Mars and Titan. Ann. Geophys, 25(1), 99–115.

Terada, N., Kulikov, Y. N., Lammer, H., Lichtenegger, H. I. M., Tanaka, T., Shinagawa, H., and Zhang, T. L. (2009). Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology, 9(1), 55–70.

Vignes, D., Mazelle, C., Rme, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., Mitchell, D. L., Cloutier, P., Crider, D. H., and Ness, N. F. (2000). The solar wind interaction with Mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor. Geophys. Res. Lett., 27(1), 49–52.

Vignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Rème, H., and Mazelle, C. (2002). Factors controlling the location of the Bow Shock at Mars. Geophys. Res. Lett., 29(9), 1328.

Withers, P. (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307.

Xu, S. S., Liemohn, M. W., Dong, C. F., Mitchell, D. L., Bougher, S. W., and Ma, Y. J. (2016). Pressure and ion composition boundaries at Mars. J. Geophys. Res., 121(7), 6417–6429.


JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028


Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020


YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025


Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019


HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008


Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics. doi: 10.26464/epp2020013


Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043


JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024


Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021


YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015


Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010


KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019


JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 0: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics. doi: 10.26464/epp2020034


Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Effects of a dipole-like crustal field on solar wind interaction with Mars

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao