Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wang, J., Xu, X. J., Yu, J., and Ye, Y. D. (2020). South-north asymmetry of proton density distribution in the Martian magnetosheath. Earth Planet. Phys., 4(1), 32–37.doi: 10.26464/epp2020003

2020, 4(1): 32-37. doi: 10.26464/epp2020003

PLANETARY SCIENCES

South-north asymmetry of proton density distribution in the Martian magnetosheath

1. 

State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China

2. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

Corresponding author: XiaoJun Xu, xjxu@must.edu.mo

Received Date: 2019-10-11
Web Publishing Date: 2020-01-01

We perform a statistical analysis of data from the Mars Atmosphere and Volatile Evolution (MAVEN) project on the global distribution of protons in the Martian magnetosheath. Our results show that the proton number density distribution has a south-north asymmetry. This south-north asymmetry is most likely caused by the south-north asymmetric distributions of the crustal magnetic fields at Mars. The strong crustal magnetic fields push the inner boundary of magnetosheath to a higher altitude in the southern hemisphere. Due to the outward movement of the inner boundary of the magnetosheath, a compressed magnetosheath forms, causing subsequent increases in proton number density, thermal pressure, and total pressure. Eventually, a balance is reached between the increased total pressure inside the magnetosheath and the increased magnetic pressure inside the induced magnetosphere. Our statistical study suggests that the Martian crustal magnetic fields can strongly affect the proton number density distribution in the Martian magnetosheath.

Key words: Martian magnetosheath, south-north asymmetry, proton density distribution, crustal magnetic field

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Reme, M. H., … Ness, N. F. (1998). Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission. Science, 279(5357), 1676–1680. https://doi.org/10.1126/science.279.5357.1676

Bertucci, C., Mazelle, C., Acuña, M. H., Russell, C. T., and Slavin, J. A. (2005). Structure of the magnetic pileup boundary at Mars and Venus. J. Geophys. Res., 110(A1), A01209. https://doi.org/10.1029/2004JA010592

Bertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szego, K., and Vaisberg, O. (2011). The induced magnetospheres of Mars, Venus, and Titan. Space Sci. Rev., 162(1-4), 113–171. https://doi.org/10.1007/s11214-011-9845-1

Brain, D. A., Halekas, J. S., Lillis, R. J., Mitchell, D. L., Lin, R. P., and Crider, D. H. (2005). Variability of the altitude of the Martian sheath. Geophys. Res. Lett., 32(18), L18203. https://doi.org/10.1029/2005GL023126

Breus, T. K., Krymskii, A. M., Lundin, R., Dubinin, E. M., Luhmann, J. G., Yeroshenko, Y. G., Barabash, S. V., Mitnitskii, V. Y., Pissarenko, N. F., and Styashkin, V. A. (1991). The solar wind interaction with Mars: consideration of Phobos 2 mission observations of an ion composition boundary on the dayside. J. Geophys. Res., 96(A7), 11165–11174. https://doi.org/10.1029/91JA01131

Chaffin, M. S., Chaufray, J. Y., Deighan, J., Schneider, N. M., McClintock, W. E., Stewart, A. I. F., Thiemann, E., Clarke, J. T., Holsclaw, G. M., … Jakosky, B. M. (2015). Three-dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophys. Res. Lett., 42(21), 9001–9008. https://doi.org/10.1002/2015GL065287

Connerney, J. E. P., Espley, J. R., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1-4), 257–291. https://doi.org/10.1007/s11214-015-0169-4

Crider, D. H., Acuña, M. H., Connerney, J. E. P., Vignes, D., Ness, N. F., Krymskii, A. M., Breus, T. K., Rème, H., Mazelle, C., … Winterhalter, D. (2002). Observations of the latitude dependence of the location of the martian magnetic pileup boundary. Geophys. Res. Lett., 29(8), 1170. https://doi.org/10.1029/2001GL013860

Dong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Lee, Y., Nagy, A. F., Tenishev, V., Pawlowski, D. J., Combi, M. R., and Najib, D. (2015). Solar wind interaction with the Martian upper atmosphere: crustal field orientation, solar cycle, and seasonal variations. J. Geophys. Res., 120(9), 7857–7872. https://doi.org/10.1002/2015JA020990

Dubinin, E., Fränz, M., Woch, J., Roussos, E., Barabash, S., Lundin, R., Winningham, J. D., Frahm, R. A., and Acuña, M. (2006a). Plasma morphology at Mars. ASPERA-3 observations. Space Sci. Rev., 126(1-4), 209–238. https://doi.org/10.1007/s11214-006-9039-4

Dubinin, E., Fraenz, M., Woch, J., Barabash, S., Lundin, R., and Yamauchi, M. (2006b). Hydrogen exosphere at Mars: pickup protons and their acceleration at the bow shock. Geophys. Res. Lett., 33(22), L22103. https://doi.org/10.1029/2006GL027799

Edberg, N. J. T., Brain, D. A., Lester, M., Cowley, S. W. H., Modolo, R., Fränz, M., and Barabash, S. (2009). Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Ann. Geophys., 27(9), 3537–3550. https://doi.org/10.5194/angeo-27-3537-2009

Fang, X. H., Ma, Y. J., Masunaga, K., Dong, Y. X., Brain, D., Halekas, J., Lillis, R., Jakosky, B., Connerney, J., … Dong, C. F. (2017). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. J. Geophys. Res., 122(4), 4117–4137. https://doi.org/10.1002/2016JA023509

Feldman, P. D., Steffl, A. J., Parker, J. W., A’Hearn, M. F., Bertaux, J. L., Stern, S. A., Weaver, H. A., Slater, D. C., Versteeg, M., … Feaga, L. M. (2011). Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars. Icarus, 214(2), 394–399. https://doi.org/10.1016/j.icarus.2011.06.013

Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., Mitchell, D. L., Lin, R. P., and Jakosky, B. M. (2015). The solar wind ion analyzer for MAVEN. Space Sci. Rev., https://doi.org/10.1007/s11214-013-0029-z222

Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., McFadden, J. P., Connerney, J. E. P., Espley, J. R., … Jakosky, B. M. (2017a). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results. J. Geophys. Res., 121(1), 547–578. https://doi.org/10.1002/2016JA023167

Halekas, J. S., Brain, D. A., Luhmann, J. G., DiBraccio, G. A., Ruhunusiri, S., Harada, Y., Fowler, C. M., Mitchell, D. L., Connerney, J. E. P., … Jakosky, B. M. (2017b). Flows, fields, and forces in the Mars-solar wind interaction. J. Geophys. Res., 122(11), 11320–11341. https://doi.org/10.1002/2017JA024772

Luhmann, J. G., Acuña, M. H., Purucker, M., Russell, C. T., and Lyon, J. G. (2002). The Martian magnetosheath: how Venus-like?. Planet. Space Sci., 50(5-6), 489–502. https://doi.org/10.1016/S0032-0633(02)00028-4

Ma, Y. J., Fang, X. H., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., Brain, D. A., and Dong, C. F. (2014). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophys. Res. Lett., 41(19), 6563–6569. https://doi.org/10.1002/2014GL060785

Matsunaga, K., Seki, K., Brain, D. A., Hara, T., Masunaga, K., Mcfadden, J. P., Halekas, J. S., Mitchell, D. L., Mazelle, C., … Jakosky, B. M. (2017). Statistical study of relations between the induced magnetosphere, ion composition, and pressure balance boundaries around mars based on MAVEN observations. J. Geophys. Res., 122(9), 9723–9737. https://doi.org/10.1002/2017JA024217

Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J. G., Acuña, M. H., Baumgärtel, K., Bertucci, C., Brain, D. A., Brecht, S. H., … Slavin, J. (2004). Bow shock and upstream phenomena at Mars. Space Sci. Rev., 111(1-2), 115–181. https://doi.org/10.1023/B:SPAC.0000032717.98679.d0

Morschhauser, A., Lesur, V., and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res., 119(6), 1162–1188. https://doi.org/10.1002/2013JE004555

Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, A., … Trotignon, J. G. (2004). The plasma environment of Mars. Space Sci. Rev., 111(1-2), 33–114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92

Øieroset, M., Mitchell, D. L., Phan, T. D., Lin, R. P., Crider, D. H., and Acuña, M. H. (2004). The magnetic field pile-up and density depletion in the Martian magnetosheath: a comparison with the plasma depletion layer upstream of the Earth's magnetopause. Space Sci. Rev., 111(1-2), 185–202. https://doi.org/10.1023/B:SPAC.0000032715.69695.9c

Sauer, K., Bogdanov, A., and Baumgärtel, K. (1994). Evidence of an ion composition boundary (protonopause) in bi-ion fluid simulations of solar wind mass loading. Geophys. Res. Lett., 21(20), 2255–2258. https://doi.org/10.1029/94GL01691

Vignes, D., Mazelle, C., Rme, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., Mitchell, D. L., Cloutier, P., Crider, D. H., and Ness, N. F. (2000). The solar wind interaction with mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard mars global surveyor. Geophys. Res. Lett., 27(1), 49–52. https://doi.org/10.1029/1999GL010703

[1]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[2]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[3]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[4]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[5]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[6]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[7]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[8]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[9]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[10]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics. doi: 10.26464/epp2020025

[11]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[12]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[13]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[14]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[15]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[16]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[17]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[18]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[19]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[20]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

South-north asymmetry of proton density distribution in the Martian magnetosheath

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye