Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Cui, J., Rong, Z. J., Wei, Y., and Wang, Y. M. (2020). Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China. Earth Planet. Phys., 4(1), 1–3.doi: 10.26464/epp2020001

2020, 4(1): 1-3. doi: 10.26464/epp2020001

PLANETARY SCIENCES

Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China

1. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

2. 

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230000, China

4. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

5. 

School of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

6. 

School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2020-01-30
Web Publishing Date: 2020-01-01

The present issue of Earth and Planetary Physics is dedicated to the near-space neutral and plasma environments of Mars. The issue includes nine papers that present new results on the properties of the Martian exosphere, ionosphere, and magnetosphere, from both observational and modeling points of view. Due to the similarity between the two objects, the issue also includes two additional papers on the near-Venus plasma environment.

Key words: Mars, Venus, exosphere, ionosphere, magnetosphere

Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Reme, H., … Cloutier, P. (1999). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284(5415), 790–793. https://doi.org/10.1126/science.284.5415.790

Benna, M., Mahaffy, P. R., Grebowsky, J. M., Fox, J. L., Yelle, R. V., and Jakosky, B. M. (2015). First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophys. Res. Lett., 42(21), 8958–8965. https://doi.org/10.1002/2015GL066146

Bertucci, C., Duru, F., Edberg, N., Fränz, M., Martinecz, C., Szego, K., and Vaisberg, O. (2011). The induced magnetospheres of Mars, Venus, and Titan. Space Sci. Rev., 162(1-4), 113–171. https://doi.org/10.1007/s11214-011-9845-1

Brain, D. A., Bagenal, F., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Mazelle, C., Mitchell, D. L., and Ness, N. F. (2002). Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res. Space Phys., 107(A6), 1076. https://doi.org/101029/2000JA000416

Cane, H. V. (2000). Coronal mass ejections and Forbush decreases. Space Sci. Rev., 93(1/2), 55–77. https://doi.org/10.1023/A:1026532125747

Cao, Y. T., Cui, J., Wu, X. S., and Zhong, J. H. (2020). Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity. Earth Planet. Phys., 4(1), 17–22. https://doi.org/10.26464/epp2020008

Chaffin, M. S., Chaufray, J. Y., Deighan, J., Schneider, N. M., McClintock, W. E., Steward, A. I. F., Thiemann, E., Clarke, J. T., Holsclaw, G. M., … Jakosky, B. M. (2015). Three-dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophys. Res. Lett., 42(21), 9001–9008. https://doi.org/10.1002/2015GL065287

Coates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., Winningham, J. D., Barabash, S., Lundin, R., Young, D. T., and Crary, F. J. (2011). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planet. Space Sci., 59(10), 1019–1027. https://doi.org/10.1016/j.pss.2010.07.016

Elphic, R. C., Russell, C. T., Slavin, J. A., Brace, L. H., and Nagy, A. F. (1980). The location of the dayside ionopause of Venus: Pioneer Venus Orbiter Magnetometer observations. Geophys. Res. Lett., 7(8), 561–564. https://doi.org/10.1029/GL007i008p00561

Fu, M. H., Cui, J., Wu, X. S., Wu, Z. P., and Li, J. (2020). The variations of the Martian exobase altitude. Earth Planet. Phys., 4(1), 4–10. https://doi.org/10.26464/epp2020010

Gu, H., Cui, J., He, Z. G., and Zhong, J. H. (2020). A MAVEN investigation of O++ in the dayside Martian ionosphere. Earth Planet. Phys., 4(1), 11–16. https://doi.org/10.26464/epp2020009

Guo, J. N., Wimmer-Schweingruber, R. F., Dumbovicx, M., Heber, B., and Wang, Y. M. (2020). A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence. Earth Planet. Phys., 4(1), 62–72. https://doi.org/10.26464/epp2020007

Han, Q. Q., Fraenz, M., Wei, Y., Dubinin, E., Cui, J. Chai, L. H., Rong, Z. J., Wan, W. X., and Futaana, Y. (2020). EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations. Earth Planet. Phys., 4(1), 73–81. https://doi.org/10.26464/epp2020011

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271

Johnson, R. E., Combi, M. R., Fox, J. L., Ip, W. -H., Leblanc, F., McGrath, M. A., Shematovich, V. I., Strobel, D. F., and Waite, J. H. (2008). Exospheres and atmospheric escape. Space Sci. Rev., 139(1-4), 355–397. https://doi.org/10.1007/s11214-008-9415-3

Li, S. B., Lu, H. Y., Cui, J., Yu, Y. Q., Mazelle, C., Li, Y., and Cao, J. B. (2020). Effects of a dipole-like crustal field on solar wind interaction with Mars. Earth Planet. Phys., 4(1), 23–31. https://doi.org/10.26464/epp2020005

Liu, D., Yao, Z. H., Wei, Y., Rong, Z. J., Shan, L. C., Arnaud, S., Jared, E., Wei, H. Y., and Wan, W. X. (2020). Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations. Earth Planet. Phys., 4(1), 51–61. https://doi.org/10.26464/epp2020002

Luhmann, J. G., Tatrallyay, M., Russell, C. T., and Winterhalter, D. (1983). Magnetic field fluctuations in the Venus magnetosheath. Geophys. Res. Lett., 10(8), 655–658. https://doi.org/10.1029/GL010i008p00655

Ma, Y. J., Nagy, A. F., Hansen, K. C., and DeZeeuw, D. L. (2002). Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. J. Geophys. Res. Space Phys., 107(A10), 1282. https://doi.org/10.1029/2002JA009293

Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329

Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, A., … Trotignon, J. G. (2004). The plasma environment of Mars. Space Sci. Rev., 111(1), 33–114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92

Richardson, I. G. (2004). Energetic particles and corotating interaction regions in the Solar Wind. Space Sci. Rev., 111(3), 267–376. https://doi.org/10.1023/B:SPAC.0000032689.52830.3e

Romanelli, N., Mazelle, C., Chaufray, J. Y., Meziane, K., Shan, L., Ruhunusiri, S., Connerney, J. E. P., Espley, J. R., Eparvier, F., … Jakosky, B. M. (2016). Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere. J. Geophys. Res. Space Phys., 121(11), 11,113–11,128. https://doi.org/10.1002/2016JA023270

Shan, L. C., Ge, Y. S., and Du, A. M. (2020). A case study of large-amplitude ULF waves in the Martian foreshock. Earth Planet. Phys., 4(1), 45–50. https://doi.org/10.26464/epp2020004

Wang, J., Xu, X. J., Yu, J., and Ye, Y. D. (2020). South-north asymmetry of proton density distribution in the Martian magnetosheath. Earth Planet. Phys., 4(1), 32–37. https://doi.org/10.26464/epp2020003

Wei, Y., Yao, Z. H., and Wan, W. X. (2018). China’s roadmap for planetary exploration. Nat. Astron., 2(5), 346–348. https://doi.org/10.1038/s41550-018-0456-6

Withers, P. (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307. https://doi.org/10.1016/j.asr.2009.04.27

Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellman, S., and Witasse, O. (2012). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res. Space Phys., 17(A12), A12307. https://doi.org/10.1029/2012JA018185

Xiao, S. D., Wu, M. Y., Wang, G. Q., Wang, G., Chen, Y. Q., and Zhang, T. L. (2020). Turbulence in the near-Venusian space: Venus Express observations. Earth Planet. Phys., 4(1), 82–87. https://doi.org/10.26464/epp2020012

Xu, Q., Xu, X. J., Chang, Q., Xu, J. Y., Wang, J., and Ye, Y. D. (2020). An ICME impact on the Martian hydrogen corona. Earth Planet.Phys., 4(1), 38–44. https://doi.org/10.26464/epp2020006

[1]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[2]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[3]

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011

[4]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[5]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[6]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[7]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[8]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[9]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[10]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics. doi: 10.26464/epp2020025

[11]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[12]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[13]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[14]

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012

[15]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[16]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[17]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[18]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[19]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[20]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang