Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Zhang, B. L., Ni, S. D., and Chen, Y. L. (2019). Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances. Earth Planet. Phys., 3(6), 537–546..

2019, 3(6): 537-546. doi: 10.26464/epp2019055


Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances

State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China

Corresponding author: SiDao Ni,

Received Date: 2019-09-22
Web Publishing Date: 2019-11-26

The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection. Because intrinsic attenuation in the lower mantle is highly sensitive to temperature, determining of the attenuation of the lower mantle could help us determine its thermal state. We attempted to constrain the attenuation of the lower mantle by measuring the amplitude ratios of p to ScP on the vertical component and s to ScS on the tangential component at short epicentral distances for seismic wave data from deep earthquakes in Northeast China. We calculated the theoretical amplitude ratios of p to ScP and s to ScS by using ray theory and the axial-symmetric spectral element method AxiSEM, as well as by considering the effects of radiation patterns, geometrical spreading, and ScP reflection coefficients. By comparing the observed amplitude ratios with the synthetic results, we constrained the quality factors as Qα ≈ 3,000 and Qβ ≈ 1,300 in the lower mantle beneath Northeast China, which are much larger than those in the preliminary reference Earth model (PREM) model of Qα ~800 and Qβ ~312. We propose that the lower mantle beneath Northeast China is relatively colder than the average mantle, resulting in weaker intrinsic attenuation and higher velocity. We estimated the temperature of the lower mantle beneath Northeast China as approximately 300–700 K colder than the global average value.

Key words: seismic attenuation, lower mantle, Northeast China, reflected core phases, thermal state

Ai, Y. S., Zheng, T. Y., Xu, W. W., He, Y. M., and Dong, D. (2003). A complex 660 km discontinuity beneath northeast China. Earth Planet. Sci. Lett., 212(1-2), 63–71.

Anderson, D. L., Ben-Menahem, A., and Archambeau, C. B. (1965). Attenuation of seismic energy in the upper mantle. J. Geophys. Res., 70(6), 1441–1448.

Anderson, D. L., and Hart, R. S. (1978a). Attenuation models of the earth. Phys. Earth Planet. Inter., 16(4), 289–306.

Anderson, D. L., and Hart, R. S. (1978b). Q of the Earth. J. Geophys. Res., 83(B12), 5869–5882.

Anderson, D. L., and Kovach, R. L. (1964). Attenuation in the mantle and rigidity of the core from multiply reflected core phases. Proc. Natl. Acad. Sci. USA, 51(2), 168–172.

Avants, M., Lay, T., and Garnero, E. J. (2006). A new probe of ULVZ S-wave velocity stucture: Array stacking of ScS waveforms. Geophys. Res. Lett., 33(7), 2–5.

Bentham, H. L. M., Rost, S., and Thorne, M. S. (2017). Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors. Earth Planet. Sci. Lett., 472, 164–173.

Burdick, L. J. (1985). Estimation of the frequency dependence of Q from ScP and ScS phases. Geophys. J. R. Astron. Soc., 80(1), 35–55.

Data Management Centre of China National Seismic Network. (2007). Waveform data of China National Seismic Network. Institute of Geophysics, China Earthquake Administration.,

Durand, S., Debayle, E., Ricard, Y., and Lambotte, S. (2016). Seismic evidence for a change in the large-scale tomographic pattern across the D′′ layer. Geophys. Res. Lett., 43(15), 7928–7936.

Durand, S., Matas, J., Ford, S., Ricard, Y., Romanowicz, B., and Montagner, J. P. (2013). Insights from ScS-S measurements on deep mantle attenuation. Earth Planet. Sci. Lett., 374, 101–110.

Durek, J. J., and Ekström, G. (1996). A radial model of anelasticity consistent with long-period surface-wave attenuation. Bull. Seismol. Soc. Am., 86(1A), 144–158.

Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297–356.

Dziewonski, A. M., Forte, A. M., Su, W. J., Woodward, R. L., (1993). Seismic Tomography and Geodynamics. In Relating Geophysical Structures and Processes. (pp. 67–105). Washington, D.C.: American Geophysical Union.

Ekström, G., Nettles, M., and Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200–201, 1–9.

French, S. W., and Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567), 95–99.

Garnero, E. J., and Vidale, J. E. (1999). ScP; a probe of ultralow velocity zones at the base of the mantle. Geophys. Res. Lett., 26(3), 377–380.

Grand, S. P., Chen Y., Kawakatsu, H., Chen, Q., Ni, J., Niu, F., Obayashi, M., and Tanaka S. (2006). NorthEast China Extended SeiSmic Array (NECESSArray): Deep subduction, mantle dynamics and continental evolution beneath northeast China, Eos Trans. AGU, 87(36), Western Pac. Geophys. Meet. Suppl., Abstract S41B-03.

Gutenberg, B. (1958). Attenuation of seismic waves in the earth’s mantle. Bull. Seismol. Soc. Am., 48, 269–282.

He, Y. M., Wen, L. X., Zheng, T. Y. (2006). Geographic boundary and shear wave velocity structure of the " Pacific anomaly” near the core-Mantle boundary beneath western Pacific. Earth Planet. Sci. Lett., 244(1-2), 302–314.

Houser, C. (2007). Constraints on the presence or absence of post-perovskite in the lowermost mantle from long-period seismology. In K. Hirose, et al. (Eds.), PostPerovskite: The Last Mantle Phase Transition (Vol. 174, pp. 1-27). Washington, DC: American Geophysical Union

Houser, C., Masters, G., Shearer, P., and Laske, G. (2008). Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int., 174(1), 195–212.

Hwang, Y. K., and Ritsema, J. (2011). Radial Qμ structure of the lower mantle from teleseismic body-wave spectra. Earth Planet. Sci. Lett., 303(3-4), 369–375.

Idehara, K., Yamada, A., and Zhao, D. P. (2007). Seismological constraints on the ultralow velocity zones in the lowermost mantle from core-reflected waves. Phys. Earth Planet. Inter., 165(1-2), 25–46.

Kanamori, H. (1967a). Spectrum of short-period core phases in relation to the attenuation in the mantle. J. Geophys. Res., 72(8), 2181–2186.

Kanamori, H. (1967b). Spectrum of P and PcP in relation to the mantle-core boundary and attenuation in the mantle. J. Geophys. Res., 72(2), 559–571.

Karato, S., and Spetzler, H. A. (1990). Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev. Geophys., 28(4), 399–421.

Koelemeijer, P., Schuberth, B. S. A., Davies, D. R., Deuss, A., and Ritsema, J. (2018). Constraints on the presence of post-perovskite in Earth ’ s lowermost mantle from tomographic-geodynamic model comparisons. Earth Planet. Sci. Lett., 494, 226–238.

Lawrence, J. F., and Wysession, M. E. (2006). QLM9: A new radial quality factor (Qμ) model for the lower mantle. Earth Planet. Sci. Lett., 241(3-4), 962–971.

Li, C., van der Hilst, R. D., Engdahl, E. R., and Burdick, S. (2008). A new global model for P wave speed variations in Earth’s mantle. Geochem., Geophys. Geosyst., 9(5), Q05018.

Li, J., Wang, X., Wang, X. J., and Yuen, D. A. (2013). P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone. Earth Planet. Sci. Lett., 367, 71–81.

Liu, C. J., and Grand, S. P. (2018). Seismic attenuation in the African LLSVP estimated from PcS phases. Earth Planet. Sci. Lett., 489, 8–16.

Mancinelli, N., Shearer, P., and Thomas, C. (2016). On the frequency dependence and spatial coherence of PKP precursor amplitudes. J. Geophys. Res., 121(3), 1873–1889.

Mancinelli, N. J., and Shearer, P. M. (2013). Reconciling discrepancies among estimates of small-scale mantle heterogeneity from PKP precursors. Geophys. J. Int., 195(3), 1721–1729.

Margerin, L., and Nolet, G. (2003). Multiple scattering of high-frequency seismic waves in the deep Earth: PKP precursor analysis and inversion for mantle granularity. J. Geophys. Res., 108(B11), 2514.

Matas, J., and Bukowinski, M. S. T. (2007). On the anelastic contribution to the temperature dependence of lower mantle seismic velocities. Earth Planet. Sci. Lett., 259(1-2), 51–65.

Mosca, I., Cobden, L., Deuss, A., Ritsema, J., and Trampert, J. (2012). Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J. Geophys. Res., 117(B6), 1–26.

Nissen-Meyer, T., Van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., Colombi, A., and Fournier, A. (2014). AxiSEM: Broadband 3-D seismic wavefields in axisymmetric media. Solid Earth, 5(1), 425–445.

Niu, F. L. (2014). Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray. Earth Planet. Sci. Lett., 402, 305–312.

Okal, E. A., and Jo, B. G. (1990). Q measurements for phase X overtones. Pure Appl. Geophys., 132(1-2), 331–362.

Persh, S. E., Vidale, J. E., and Earle, P. S. (2001). Absence of short-period ULVZ precursors to PcP and ScP from two regions of the CMB. Geophys. Res. Lett., 28(2), 387–390.

Press, F. (1956). Rigidity of the Earth’s Core. Science., 124(3233), 1204.

Ranasinghe, N. R., Gallegos, A. C., Trujillo, A. R., Blanchette, A. R., Sandvol, E. A., Ni, J., Hearn, T. M., Tang, Y. C., Grand, S. P., … Obayashi, M. (2015). Lg attenuation in northeast China using NECESSArray data. Geophys. J. Int., 200(1), 67–76.

Revenaugh, J., and Meyer, R. (1997). Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle. Science., 277(5326), 670–673.

Ritsema, J., Deuss, A., Van Heijst, H. J., and Woodhouse, J. H. (2011). S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int., 184(3), 1223–1236.

Rost, S., and Revenaugh, J. (2001). Seismic detection of rigid zones at the top of the core. Science., 294(5548), 1911–4.

Rost, S., and Revenaugh, J. (2003). Small-scale ultralow-velocity zone structure imaged by ScP. J. Geophys. Res., 108(B1), 2056.

Schlittenhardt, J. (1986). Investigation of the velocity- and Q-structure of the lowermost mantle using PcP/P amplitude ratios from arrays at distances of 70°–84°. J. Geophys., 60, 1–18.

Shearer, P. M. (2009). Introduction to Seismology (2nd ed). Cambridge: Cambridge University Press.

Shearer, P. M., and Earle, P. S. (2004). The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int., 158(3), 1103–1117.

Shen, Z. C., Ni, S. D., Wu, W. B., and Sun, D. Y. (2016). Short period ScP phase amplitude calculations for core-mantle boundary with intermediate scale topography. Phys. Earth Planet. Inter., 253, 64–73.

Simmons, N. A., Myers, S. C., Johannesson, G., and Matzel, E. (2012). LLNL-G3Dv3: Global P-wave tomography model for improved regional and teleseismic travel time prediction. J. Geophys. Res., 117(B10), B10302.

Sun, X. L., Song, X. D., Zheng, S. H., and Helmberger, D. V. (2007). Evidence for a chemical-thermal structure at base of mantle from sharp lateral P-wave variations beneath Central America. Proc. Natl. Acad. Sci. U S.A., 104(1), 26–30.

Trampert, J., Deschamps, F., Resovsky, J., and Yuen, D. (2004). Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306(5697), 853–856.

Vidale, J. E., and Benz, H. M. (1992). A sharp and flat section of the core-mantle boundary. Nature, 359(6596), 627–629.

Waszek, L., Thomas, C., and Deuss, A. (2015). PKP precursors: Implications for global scatterers. Geophys. Res. Lett., 42(10), 3829–3838.

Widmer, R., Masters, G., and Gilbert, F. (1991). Spherically symmetric attenuation within the Earth from normal mode data. Geophys. J. Int., 104(3), 541–553.

Xu, Y., and Koper, K. D. (2009). Detection of a ULVZ at the base of the mantle beneath the northwest Pacific. Geophys. Res. Lett., 36(17), 1–5.

Ye, L. L., Li, J., Tseng, T. L., and Yao, Z. X. (2011). A stagnant slab in a water-bearing mantle transition zone beneath northeast China: Implications from regional SH waveform modelling. Geophys. J. Int., 186(2), 706–710.

Yoshida, M., and Tsujiura, M. (1975). Spectrum and attenuation of multiply reflected core phases. J. Phys. Earth., 23, 31–42.

Zhang, B. L., Ni, S. D., and Sun, D. Y. (2019). Seismological constraints on the small-scale heterogeneity in the lowermost mantle beneath east asia and implication for its mineralogical origin. Geophys. Res. Lett., 46(10), 5225–5233.

Zhang, B. L., Ni, S. D., Sun, D. Y., Shen, Z. C., Jackson, J. M., and Wu, W. B. (2018). Constraints on small-scale heterogeneity in the lowermost mantle from observations of near podal PcP precursors. Earth Planet. Sci. Lett., 489, 267–276.

Zhao, L. F., Xie, X. B., Tian, B. F., Chen, Q. F., Hao, T. Y., and Yao, Z. X. (2015). Pn wave geometrical spreading and attenuation in Northeast China and the Korean Peninsula constrained by observations from North Korean nuclear explosions. J. Geophys. Res., 120(11), 7558–7571.

Zhao, L. F., Xie, X. B., Wang, W. M., Zhang, J. H., and Yao, Z. X. (2013). Crustal Lg attenuation within the North China Craton and its surrounding regions. Geophys. J. Int., 195(1), 513–531.

Zheng, X. F., Yao, Z. X., Liang, J. J., and Zheng, J. (2010). The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches. Bull. Seismol. Soc. Amer., 100(5B), 2866–2872.


QiZhen Du, WanYu Wang, WenHan Sun, Li-Yun Fu, 2022: Seismic attenuation compensation with spectral-shaping regularization, Earth and Planetary Physics, 6, 259-274. doi: 10.26464/epp2022024


Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029


Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


ZiQi Ma, Gang Lu, JianFeng Yang, Liang Zhao, 2022: Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton, Earth and Planetary Physics, 6, 191-203. doi: 10.26464/epp2022016


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004


ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041


Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005


YuMei He, LianXing Wen, Yann Capdeville, 2021: Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth, Earth and Planetary Physics, 5, 105-116. doi: 10.26464/epp2021009


DongDong Ni, 2020: Signature of helium rain and dilute cores in Jupiter's interior from empirical equations of state, Earth and Planetary Physics, 4, 111-119. doi: 10.26464/epp2020017


Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030


Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics, 5, 290-295. doi: 10.26464/epp2021027


JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019


RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006


YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050


DaLi Kong, KeKe Zhang, 2020: Lower-order zonal gravitational coefficients caused by zonal circulations inside gaseous planets: Convective flows and numerical comparison between modeling approaches, Earth and Planetary Physics, 4, 89-94. doi: 10.26464/epp2020014


JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances

BaoLong Zhang, SiDao Ni, YuLin Chen