Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wu, X. S., Cui, J., Yu, J., Liu, L. J., and Zhou, Z. J. (2019). Photoelectron balance in the dayside Martian upper atmosphere. Earth Planet. Phys., 3(5), 373–379.doi: 10.26464/epp2019038

doi: 10.26464/epp2019038

PLANETARY SCIENCES

Photoelectron balance in the dayside Martian upper atmosphere

1. 

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

2. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China

4. 

Space Science Institute, Macau University of Science and Technology, Macau, China

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2019-06-04
Web Publishing Date: 2019-09-01

Photoelectrons are produced by solar Extreme Ultraviolet radiation and contribute significantly to the local ionization and heat balances in planetary upper atmospheres. When the effect of transport is negligible, the photoelectron energy distribution is controlled by a balance between local production and loss, a condition usually referred to as local energy degradation. In this study, we examine such a condition for photoelectrons near Mars, with the aid of a multi-instrument Mars Atmosphere and Volatile Evolution data set gathered over the inbound portions of a representative dayside MAVEN orbit. Various photoelectron production and loss processes considered here include primary and secondary ionization, inelastic collisions with atmospheric neutrals associated with both excitation and ionization, as well as Coulomb collisions with ionospheric thermal electrons. Our calculations indicate that photoelectron production occurs mainly via primary ionization and degradation from higher energy states during inelastic collisions; photoelectron loss appears to occur almost exclusively via degradation towards lower energy states via inelastic collisions above 10 eV, but the effect of Coulomb collisions becomes important at lower energies. Over the energy range of 30–55 eV (chosen to reduce the influence of the uncertainty in spacecraft charging), we find that the condition of local energy degradation is very well satisfied for dayside photoelectrons from 160 to 250 km. No evidence of photoelectron transport is present over this energy range.

Key words: Mars, Photoelectron, MAVEN

Benna, M., Mahaffy, P. R., Grebowsky, J. M., Fox, J. L., Yelle, R. V., and Jakosky, B. M. (2015). First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophys. Res. Lett., 42(21), 8958–8965. https://doi.org/10.1002/2015GL066146

Bhardwaj, A., and Jain, S. K. (2009). Monte Carlo model of electron energy degradation in a CO2 atmosphere. J. Geophys. Res. Space Phys., 114(A11), A11309. https://doi.org/10.1029/2009JA014298

Brain, D. A., Mitchell, D. L., and Halekas, J. S. (2006). The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus, 182(2), 464–473. https://doi.org/10.1016/j.icarus.2005.09.023

Chen, R. H., Cravens, T. E., and Nagy, A. F. (1978). The Martian ionosphere in light of the Viking observations. J. Geophys. Res. Space Phys., 83(A8), 3871–3876. https://doi.org/10.1029/JA083iA08p03871

Choi, Y. W., Kim, J., Min, K. W., Nagy, A. F., and Oyama, K. I. (1998). Effect of the magnetic field on the energetics of Mars ionosphere. Geophys. Res. Lett., 25(14), 2753–2756. https://doi.org/10.1029/98GL51839

Coates, A. J., Frahm, R. A., Linder, D. R., Kataria, D. O., Soobiah, Y., Collinson, G., Sharber, J. R., Winningham, J. D., Jeffers, S. J., … Grande, M. (2008). Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planet. Space Sci., 56(6), 802–806. https://doi.org/10.1016/j.pss.2007.12.008

Coates, A. J., Crary, F. J., Young, D. T., Szego, K., Arridge, C. S., Bebesi, Z., Sittler, Jr. E. C., Hartle, R. E., and Hill, T. W. (2007). Ionospheric electrons in Titan’s tail: Plasma structure during the Cassini T9 encounter. Geophys. Res. Lett., 34(24), L24S05. https://doi.org/10.1029/2007GL030919

Coates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., Winningham, J. D., Barabash, S., Lundin, R., Young, D. T., and Crary, F. J. (2011). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planet. Space Sci., 59(10), 1019–1027. https://doi.org/10.1016/j.pss.2010.07.016

Coates, A. J., Wellbrock, A., Frahm, R. A., Winningham, J. D., Fedorov, A., Barabash, S., and Lundin, R. (2015). Distant ionospheric photoelectron energy peak observations at Venus. Planet. Space Sci., 113-114, 378–384. https://doi.org/10.1016/j.pss.2015.02.003

Cui, J., Yelle, R. V., Vuitton, V., Waite, Jr. J. H., Kasprzak, W. T., Gell, D. A., Niemann, H. B., Müller-Wodarg, I. C. F., Borggren, N., … Magee, B. A. (2009). Analysis of Titan’s neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus, 200(2), 581–615. https://doi.org/10.1016/j.icarus.2008.12.005

Cui, J., Galand, M., Coates, A. J., Zhang, T. L., and Müller-Wodarg, I. C. F. (2011). Suprathermal electron spectra in the Venus ionosphere. J. Geophys. Res. Space Phys., 116(A4), A04321. https://doi.org/10.1029/2010JA016153

Cui, J., Wu, X. S., Xu, S. S., Wang, X. D., Wellbrock, A., Nordheim, T. A., Cao, Y. T., Wang, W. R., Sun, W. Q., … Wei, Y. (2018). Ionization efficiency in the dayside Martian upper atmosphere. Astrophys. J. Lett., 857(2), L18. https://doi.org/10.3847/2041-8213/aabcc6

Cui, J., Cao, Y. T., Wu, X. S., Xu, S. S., Yelle, R. V., Stone, S., Vigren, E., Edberg, N. J. T., Shen, C. L., He, F., and Wei, Y. (2019). Evaluating local ionization balance in the nightside Martian upper atmosphere during MAVEN Deep Dip campaigns. Astrophys. J. Lett., 876(1), L12. https://doi.org/10.3847/2041-8213/ab1b34

Doering, J. P., Peterson, W. K., Bostrom, C. O., and Potemra, T. A. (1976). High resolution daytime photoelectron energy spectra from AE-E. Geophys. Res. Lett., 3(3), 129–131. https://doi.org/10.1029/GL003i003p00129

Ergun, R. E., Morooka, M. W., Andersson, L. A., Fowler, C. M., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., and Jakosky, B. M. (2015). Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophys. Res. Lett., 42(21), 8846–8853. https://doi.org/10.1002/2015GL065280

Fox, J. L., Galand, M. I., and Johnson, R. E. (2008). Energy deposition in planetary atmospheres by charged particles and solar photons. Space Sci. Rev., 139(1-4), 3–62. https://doi.org/10.1007/s11214-008-9403-7

Frahm, R. A., Winningham, J. D., Sharber, J. R., Scherrer, J. R., Jeffers, S. J., Coates, A. J., Linder, D. R., Kataria, D. O., Lundin, R., … Dierker, C. (2006a). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182(2), 371–382. https://doi.org/10.1016/j.icarus.2006.01.014

Frahm, R. A., Sharber, J. R., Winningham, J. D., Wurz, P., Liemohn, M. W., Kallio, E., Yamauchi, M., Lundin, R., Barabash, S., … McKenna-Lawer, S. (2006b). Locations of atmospheric photoelectron energy peaks within the Mars environment. Space Sci. Rev., 126(1-4), 389–402. https://doi.org/10.1007/s11214-006-9119-5

Frahm, R. A., Sharber, J. R., Winningham, J. D., Link, R., Liemohn, M. W., Kozyra, J. U., Coates, A. J., Linder, D. R., Barabash, S., … Fedorov, A. (2010). Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen. Icarus, 206(1), 50–63. https://doi.org/10.1016/j.icarus.2009.03.024

Han, X., Fraenz, M., Dubinin, E., Wei, Y., Andrews, D. J., Wan, W., He, M., Rong, Z. J., Chai, L., … Barabash, S. (2014). Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements. Geophys. Res. Lett., 41(23), 8221–8227. https://doi.org/10.1002/2014GL062287

Heays, A. N., Bosman, A. D., and van Dishoeck, E. F. (2017). Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astron. Astrophys., 602, A105. https://doi.org/10.1051/0004-6361/201628742

Itikawa, Y. (2002). Cross sections for electron collisions with carbon dioxide. J. Phys. Chem. Ref. Data, 31(3), 749–769. https://doi.org/10.1063/1.1481879

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271

Kitamura, N., Seki, K., Nishimura, Y., and McFadden, J. P. (2015). Limited impact of escaping photoelectrons on the terrestrial polar wind flux in the polar cap. Geophys. Res. Lett., 42(9), 3106–3113. https://doi.org/10.1002/2015GL063452

Lavvas, P., Galand, M., Yelle, R. V., Heays, A. N., Lewis, B. R., Lewis, G. R., and Coates, A. J. (2011). Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus, 213(1), 233–251. https://doi.org/10.1016/j.icarus.2011.03.001

Lee, J. S., Doering, J. P., Potemra, T. A., and Brace, L. H. (1980). Measurements of the ambient photoelectron spectrum from atmosphere explorer: Ⅰ. AE-E measurements below 300 km during solar minimum conditions. Planet. Space Sci., 28(10), 947–971. https://doi.org/10.1016/0032-0633(80)90058-6

Lee, J. S., Doering, J. P., Potemra, T. A., and Brace, L. H. (1980). Measurements of the ambient photoelectron spectrum from atmosphere explorer: Ⅱ. AE-E measurements from 300 to 1000 km during solar minimum conditions. Planet. Space Sci., 28(10), 973–996. https://doi.org/10.1016/0032-0633(80)90059-8

Liemohn, M. W., Dupre, A., Bougher, S. W., Trantham, M., Mitchell, D. L., and Smith, M. D. (2012). Time-history influence of global dust storms on the upper atmosphere at Mars. Geophys. Res. Lett., 39(11), L11201. https://doi.org/10.1029/2012GL051994

Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329

Mantas, G. P., and Hanson, W. B. (1979). Photoelectron fluxes in the Martian ionosphere. J. Geophys. Res., 84(A2), 369–385. https://doi.org/10.1029/JA084iA02p00369

Matta, M., Galand, M., Moore, L., Mendillo, M., and Withers, P. (2014). Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 227, 78–88. https://doi.org/10.1016/j.icarus.2013.09.006

McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., Sterling, R., Hatch, K., Berg, P., … Jakosky, B. (2015). MAVEN suprathermal and thermal ion compostion (STATIC) instrument. Space Sci. Rev., 195(1-4), 199–256. https://doi.org/10.1007/s11214-015-0175-6

Mitchell, D. L., Lin, R. P., Rème, H., Crider, D. H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (2000). Oxygen auger electrons observed in Mars’ ionosphere. Geophys. Res. Lett., 27(13), 1871–1874. https://doi.org/10.1029/1999GL010754

Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1-4), 495–528. https://doi.org/10.1007/s11214-015-0232-1

Nicholson, W. P., Gronoff, G., Lilensten, J., Aylward, A. D., and Simon, C. (2009). A fast computation of the secondary ion production in the ionosphere of Mars. Mon. Not. R. Astron. Soc., 400(1), 369–382. https://doi.org/10.1111/j.1365-2966.2009.15463.x

Peterson, W. K., Thiemann, E. M. B., Eparvier, F. G., Andersson, L., Fowler, C. M., Larson, D., Mitchell, D., Mazelle, C., Fontenla, J., … Jakosky, B. (2016). Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. J. Geophys. Res. Space Phys., 121(9), 8859–8870. https://doi.org/10.1002/2016JA022677

Peterson, W. K., Fowler, C. M., Andersson, L. A., Thiemann, E. M. B., Jain, S. K., Mayyasi, M., Esman, T. M., Yelle, R., Benna, M., and Espley, J. (2018). Martian electron temperatures in the subsolar region: MAVEN observations compared to a one-dimensional model. J. Geophys. Res. Space Phys., 123(7), 5960–5973. https://doi.org/10.1029/2018JA025406

Sakai, S., Rahmati, A., Mitchell, D. L., Cravens, T. E., Bougher, S. W., Mazelle, C., Peterson, W. K., Eparvier, F. G., Fontenla, J. M., and Jakosky, B. M. (2015). Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophys. Res. Lett., 42(21), 8894–8900. https://doi.org/10.1002/2015GL065169

Shutte, N. M., Király, P., Cravens, T. E., Dyachkov, A. V., Gombos, T. I., Gringuaz, K. I., Nagy, A. F., Sharp, W. E., Sheronova, S. M., … Verigin, M. (1989). Observation of electron and ion fluxes in the vicinity of Mars with the HARP spectrometer. Nature, 341(6243), 614–616. https://doi.org/10.1038/341614a0

Stamnes, K., and Rees, M. H. (1983). Heating of thermal ionospheric electrons by suprathermal electrons. Geophys. Res. Lett., 10(4), 309–312. https://doi.org/10.1029/GL010i004p00309

Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., and Mahaffy, P. R. (2018). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. J. Geophys. Res. Planets, 123(11), 2842–2867. https://doi.org/10.1029/2018JE005559

Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res. Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512

Trantham, M., Liemohn, M., Mitchell, D., and Frank, J. (2011). Photoelectrons on closed crustal field lines at Mars. J. Geophys. Res. Space Phys., 116(A7), A07311. https://doi.org/10.1029/2010JA016231

Tsang, S. M. E., Coates, A. J., Jones, G. H., Frahm, R. A., Winningham, J. D., Barabash, S., Lundin, R., and Fedorov, A. (2015). Ionospheric photoelectrons at Venus: Case studies and first observation in the tail. Planet. Space Sci., 113-114, 385–394. https://doi.org/10.1016/j.pss.2015.01.019

Wellbrock, A., Coates, A. J., Sillanpää, I., Jones, G. H., Arridge, C. S., Lewis, G. R., Young, D. T., Crary, F. J., and Aylward, A. D. (2012). Cassini observations of ionospheric photoelectrons at large distances from Titan: Implications for Titan’s exospheric environment and magnetic tail. J. Geophys. Res. Space Phys., 117(A3), A03216. https://doi.org/10.1029/2011JA017113

Xu, S. S., Liemohn, M., Bougher, S., and Mitchell, D. (2016a). Martian high-altitude photoelectrons independent of solar zenith angle. J. Geophys. Res. Space Phys., 121(4), 3767–3780. https://doi.org/10.1002/2015JA022149

Xu, S. S., Mitchell, D., Liemohn, M., Dong, C. F., Bougher, S., Fillingim, F., Lillis, R., McFadden, J., Mazelle, C., … Jakosky, B. (2016b). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett., 43(17), 8876–8884. https://doi.org/10.1002/2016GL070527

Xu, S. S., Mitchell, D., Liemohn, M., Fang, X. H., Ma, Y. J., Luhmann, J., Brain, D., Steckiewicz, M., Mazelle, C., … Jakosky, B. (2017a). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. J. Geophys. Res. Space Phys., 122(2), 1831–1852. https://doi.org/10.1002/2016JA023467

Xu, S. S., Mitchell, D., Luhmann, J., Ma, Y. J., Fang, X. H., Harada, Y., Hara, T., Brain, D., Weber, T., … DiBraccio, G. A. (2017b). High-altitude closed magnetic loops at Mars observed by MAVEN. Geophys. Res. Lett., 44(22), 11229–11238. https://doi.org/10.1002/2017GL075831

[1]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[2]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[3]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Photoelectron balance in the dayside Martian upper atmosphere

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou