ISSN  2096-3955

CN  10-1502/P

2019 Vol.3(2)

Display Mode:          |     

Toward better watching of the deep atmosphere over East Asia
TianJun Zhou
2019, 3(2): 85-86. doi: 10.26464/epp2019010
A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau
JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu
2019, 3(2): 87-92. doi: 10.26464/epp2019017
The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate. In particular, the Asian summer monsoon (ASM) anticyclone circulation system over the Tibetan Plateau is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. To improve understanding of these physical processes, a multi-location joint atmospheric experiment was performed over the Tibetan Plateau from late July to August in 2018, funded by the five-year (2018–2022) STEAM (stratosphere and troposphere exchange experiment during ASM) project, during which multiple platforms/instruments—including long-duration stratospheric balloons, dropsondes, unmanned aerial vehicles, special sounding systems, and ground-based and satellite-borne instruments—will be deployed. These complementary methods of data acquisition are expected to provide comprehensive atmospheric parameters (aerosol, ozone, water vapor, CO2, CH4, CO, temperature, pressure, turbulence, radiation, lightning and wind); the richness of this approach is expected to advance our comprehension of key mechanisms associated with thermal, dynamical, radiative, and chemical transports over the Tibetan Plateau during ASM activity.
Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets
Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li
2019, 3(2): 93-101. doi: 10.26464/epp2019011
Using four satellite data sets (TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone (TCO) and its zonal deviation (TCO*), and reveal the vertical structure of the Ozone Low (OV) over the Asian continent. Our principal findings are: (1) The TCO over the Asian continent reaches its maximum in the spring and its minimum in the autumn. The Ozone Low exists from May to September. (2) The Ozone Low has two negative cores, located in the lower and the upper stratosphere. The lower core is near 30 hPa in the winter and 70 hPa in the other seasons. The upper core varies from 10 hPa to 1 hPa among the four seasons. (3) The position of the Ozone Low in the lower and the upper stratosphere over the Asian continent shows seasonal variability.
Propagation of positive, negative, and recoil leaders in upward lightning flashes
XiuShu Qie, ShanFeng Yuan, HongBo Zhang, RuBin Jiang, ZhiJun Wu, MingYuan Liu, ZhuLing Sun, YunJiao Pu, JinLiang Li, Abhay Srivastava, ZiLong Ma, GaoPeng Lu
2019, 3(2): 102-110. doi: 10.26464/epp2019014
Leader propagation is a fundamental issue in lightning physics. The propagation characteristics of positive leaders and negative leaders are summarized and compared based on data from high-speed camera and electromagnetic field in rocket-triggered lightning and tower-initiated lightning discharges; available channel base current data recorded in rocket-triggered lightning are also used. The negative leaders propagate in a stepped fashion accompanied by many branches. The stems ahead of the negative leader tip determine the manner and direction of the leader propagation, and even the branching and winding of the lightning channel. The impulsive current, electromagnetic field, and related optical images suggest that the positive leader may develop in a step-like fashion at its initial stage of triggered lightning. However, the stepping processes of the positive leader are obviously different from those of the negative leader. Tower-initiated lightning revealed that the most conspicuous characteristics of the stepwise positive leader involve the intermittent brush-like corona zone in front of the leader tip and the luminosity enhancement of the channel behind the tip. In rocket-triggered lightning flashes, the charge transferred during an individual step for the negative leader was nearly an order greater than for the positive counterpart. The successive streamers ahead of the leader tip are essential for both negative and positive leader propagation, and the stems could be formed from one or more streamers in the previous negative streamer zone with the main leader channel dim. High-resolution observation of tower lightning also revealed a new type of bidirectional recoil leader, with polarity contrary to the traditional one, traversing in negative channels associated with tower-initiated and rocket-triggered lightning.
Triangulation of red sprites observed above a mesoscale convective system in North China
YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou
2019, 3(2): 111-125. doi: 10.26464/epp2019015
The triangulation of red sprites was obtained, based on concurrent observations over a mesoscale convective system (MCS) in North China from two stations separated by about 450 km. In addition, broadband sferics from the sprite-producing lightning were measured at five ground stations, making it possible to locate and identify the individual causative lightning discharges for different elements in this dancing sprite event. The results of our analyses indicate that the sprites were produced above the trailing stratiform region of the MCS, and their parent strokes were located mainly in the peripheral area of the stratiform. The lateral offset between sprites and causative strokes ranges from a few km to more than 50 km. In a particularly bright sprite, with a distinct halo feature and streamers descending down to an altitude of approximately 48 km, the sprite current signal identified in the electric sferic, measured at a range of about 1,110 km, peaked at approximately 1 ms after the return stroke.
Application of cloud multi-spectral radiances in revealing cloud physical structures
Juan Huo, DaRen Lu, WenJing Xu
2019, 3(2): 126-135. doi: 10.26464/epp2019016
The radiances scattered or emitted by clouds demonstrate diverse features at different wavelengths due to different cloud physical structures. This paper presents a method (the smallest-radiance-distance method, SRaDM) of revealing the physical structures of clouds. The method is based on multi-spectral radiances measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua. The principle and methodology of SRaDM is deduced and provided in this paper. Correlation analysis based on data from MODIS and Cloud Profiling Radar (onboard CloudSat), collected from January 2007 to December 2010 over an ocean area (15°N–45°N, 145°E–165°E), led to selection of radiances at 13 wavebands of MODIS that demonstrated high sensitivity to cloud physical structures; radiances at the selected wavebands were subjected to SRaDM. The Standardized Euclidean distance is introduced to quantify the degree of changes in multi-spectral radiances (termed Drd) and in physical structures (termed Dst) between cloud profiles. Statistics based on numerous cloud profiles show that Drd decreases monotonically with a decrease in Dst, which implies that small Drd always accompanies small Dst. According to the law of Drd and Dst, the new method, SRaDM, for revealing physical structures of clouds from the collocation of cloud profiles of similar multi-spectral radiances, is presented. Then, two successful experiments are presented in which cloud physical structures are captured using multi-spectral radiances. SRaDM provides a way to obtain knowledge of the physical structures of clouds over relatively larger areas, and is a new approach to obtaining 3D cloud fields.
Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER
Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li
2019, 3(2): 136-146. doi: 10.26464/epp2019013
Observations of a quasi-90-day oscillation in the mesosphere and lower thermosphere (MLT) region from April 2011 to December 2014 are presented in this study. There is clear evidence of a quasi-90-day oscillation in temperatures obtained from the Kunming meteor radar (25.6°N, 103.8°E) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), as well as in wind observed by the Kunming meteor radar. The quasi-90-day oscillation appears to be a prominent feature in the temperatures and meridional wind tides and presents quite regular cycles that occur approximately twice per year. The amplitudes and phases of the quasi-90-day oscillation in the SABER temperature show a feature similar to that of upward-propagated diurnal tides, which have a vertical wavelength of ~20 km above 70 km. In the lower atmosphere, a similar 90-day variability is presented in the surface latent heat flux and correlates with the temperature in the MLT region. Similar to the quasi-90-day oscillation in temperature, a 90-day variability of ozone (O3) is also present in the MLT region and is considered to be driven by a similar variability in the upwardly-propagated diurnal tides generated in the lower atmosphere. Moreover, the 90-day variability in the absorption of ultraviolet (UV) radiation by daytime O3 in the MLT region is an in situ source of the quasi-90-day oscillation in the MLT temperature.
Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system
Xian Chen, Zhong Zhong, YiJia Hu, Shi Zhong, Wei Lu, Jing Jiang
2019, 3(2): 147-156. doi: 10.26464/epp2019018
Precipitation observations collected at weather stations in eastern China, the NCEP/NCAR reanalysis data, the tropical cyclone (TC) Best Track Dataset, and a sensitivity numerical experiment were used in the present study to investigate the role in the East Asian summer monsoon (EASM) system played by frequent TC activities over the western North Pacific (WNP). Results indicated that, in active TC years, the EASM is stronger and the southerly winds in the lower troposphere advance farther north and reach higher latitudes. Meanwhile, the monsoon rain belt remains in the lower and middle reaches of the Yangtze River valley for a relatively short period, leading to less precipitation there. Both the western Pacific subtropical high and the South Asian high weaken with the northward shift of the ridgelines for both high-pressure systems as well as the East Asian subtropical upper-level jet. Therefore, the impacts of frequent TC activities over the WNP on each individual component of the EASM are in phase with those of the stronger EASM itself, amplifying features of the already strengthened EASM.
The first two leading modes of the tropical Pacific and their linkage without global warming
Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li
2019, 3(2): 157-165. doi: 10.26464/epp2019019
A discrepancy remains in the first two leading empirical orthogonal function (EOF) modes of the tropical Pacific sea surface temperature anomaly (SSTA) based on observations since the 1980s. The EOF1 mode, representing the El Niño-Southern Oscillation (ENSO), is a robust result. However, the EOF2 features either El Niño Modoki (EM) or ENSO evolution during different periods, which is probably associated with the impacts of global warming. The underlying question is what the EOF2 mode of the tropical Pacific would be without global warming. Using the CMIP5 preindustrial scenario to exclude the influence of global warming, we find that the EOF1 mode of the tropical Pacific SSTA represents ENSO and that the EOF2 mode is not EM. According to the lead–lag correlation between the ENSO and EOF2 modes, the linkage between these two modes is as follows: …El Niño → EOF2 → La Niña → –EOF2 → El Niño…. By analyzing the evolution of sea surface temperature, surface wind, and subsurface ocean temperature anomalies, we find the mechanism linking the ENSO and EOF2 modes is the air–sea interaction associated with the ENSO cycle. This result suggests that the EOF2 mode represents an aspect of ENSO evolution under preindustrial conditions. Therefore, this study further indicates that the EM is probably due to the influence of global warming.
Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses
Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu
2019, 3(2): 166-181. doi: 10.26464/epp2019012
This study compares the climatology and long-term trend of northern winter stratospheric residual mean meridional circulation (RMMC), as well as its responses to El Niño-Southern Oscillation (ENSO), stratospheric Quasi Biennial Oscillation (QBO), and solar cycle in ten reanalyses and a stratosphere-resolving model, CESM1-WACCM. The RMMC is a large-scale meridional circulation cell in the stratosphere, usually referred to as the estimate of the Brewer Dobson circulation (BDC). The distribution of the BDC is generally consistent among multiple reanalyses except that the NOAA twentieth century reanalysis (20RC) largely underestimates it. Most reanalyses (except ERA40 and ERA-Interim) show a strengthening trend for the BDC during 1979–2010. All reanalyses and CESM1-WACCM consistently reveal that the deep branch of the BDC is significantly enhanced in El Niño winters as more waves from the troposphere dissipate in the stratospheric polar vortex region. A secondary circulation cell is coupled to the temperature anomalies below the QBO easterly center at 50 hPa with tropical upwelling/cooling and midlatitude downwelling/warming, and similar secondary circulation cells also appear between 50–10 hPa and above 10 hPa to balance the temperature anomalies. The direct BDC response to QBO in the upper stratosphere creates a barrier near 30°N to prevent waves from propagating to midlatitudes, contributing to the weakening of the polar vortex. The shallow branch of the BDC in the lower stratosphere is intensified during solar minima, and the downwelling warms the Arctic lower stratosphere. The stratospheric responses to QBO and solar cycle in most reanalyses are generally consistent except in the two 20CRs.