Citation:
Wang, J. Y., Yi, W., Chen, T. D., and Xue, X. H. (2020). Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation. Earth Planet. Phys., 4(3), 285–295. http://doi.org/10.26464/epp2020024
2020, 4(3): 285-295. doi: 10.26464/epp2020024
Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation
1. | Chinese Academy of Sciences Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China |
2. | Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
3. | Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China |
4. | Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
By using atmospheric wind data in the mesopause and lower thermosphere (MLT) region, features of seasonal variations in the quasi-6-day wave (6DW) at different latitudes are analyzed, and modulation of the 6DW by the diurnal tide and solar 27-day period is discussed. The data used in the analysis are extracted from a wind dataset collected by a meteor radar chain from December 2008 to November 2017. The meteor radar chain includes four stations, in Mohe, Beijing, Wuhan, and Sanya. Features of seasonal variations in the 6DW indicate that in summer the 6DW is usually strongest during July and August, followed by stronger variations in January and April. At certain altitudes over Wuhan and Sanya, the 6DW is slightly different in different years and altitudes. In our analysis of seasonal variations in the 6DW, we find that it is generally affected by annual oscillations and semiannual oscillations. The annual oscillations of the 6DW in the mid-low latitudes are modulated by the quasibiennial oscillation in the diurnal tide, resulting in seasonal features that are different from those at other latitudes. In addition, the 6DW amplitude at mid-high latitudes has a significant 27-day solar rotation variation, which was prominent in 2016.
Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 489). San Diego, Calif: Academic.222 |
Belova, A., Kirkwood, S., Murtagh, D., Mitchell, N., Singer, W., and Hocking, W. (2008). Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007. Ann. Geophys., 26(11), 3557–3570. https://doi.org/10.5194/angeo-26-3557-2008 |
Forbes, J. M. (2000). Wave coupling between the lower and upper atmosphere: case study of an ultra-fast Kelvin Wave. J. Atmos. Sol. -Terr. Phys., 62(17-18), 1603–1621. https://doi.org/10.1016/s1364-6826(00)00115-2 |
Forbes, J. M., and Zhang, X. L. (2017). The quasi-6 day wave and its interactions with solar tides. J. Geophys. Res.-Space Phys., 122(4), 4764–4776. https://doi.org/10.1002/2017ja023954 |
Franke, S. J., Chu, X., Liu, A. Z., and Hocking, W. K. (2005). Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause region above Maui, Hawaii. J. Geophys. Res.-Atmos., 110(D9), D09S02. https://doi.org/10.1029/2003jd004486 |
Gan, Q., Wang, W. B., Yue, J., Liu, H. L., Chang, L. C., Zhang, S. D., Burns, A., and Du, J. A. (2016). Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation. J. Geophys. Res.-Space Phys., 121(10), 10103–10116. https://doi.org/10.1002/2016ja022907 |
Garcia, R. R., Lieberman, R., Russell Ⅲ, J. M., and Mlynczak, M. G. (2005). Large-scale waves in the mesosphere and lower thermosphere observed by SABER. J. Atmos. Sci., 62(12), 4384–4399. https://doi.org/10.1175/jas3612.1 |
Geisler, J. E., and Dickinson, R. E. (1976). The five-day wave on a sphere with realistic zonal winds. J. Atmos. Sci., 33(4), 632–641. https://doi.org/10.1175/1520-0469(1976)033<0632:Tfdwoa>2.0.Co;2 |
Gong, Y., Li, C., Ma, Z., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Li, G. Z., and Ning, B. Q. (2018). Study of the quasi-5-day wave in the MLT region by a meteor radar chain. J. Geophys. Res.-Atmos., 123(17), 9474–9487. https://doi.org/10.1029/2018jd029355 |
Gu, S. Y., Ruan, H. B., Yang, C. Y., Gan, Q., Dou, X. K., and Wang, N. N. (2018). The morphology of the 6-day wave in both the neutral atmosphere and F region ionosphere under solar minimum conditions. J. Geophys. Res.-Space Phys., 123(5), 4232–4240. https://doi.org/10.1029/2018ja025302 |
Hocking, W. K., Fuller, B., and Vandepeer, B. (2001). Real-time determination of meteor-related parameters utilizing modern digital technology. J. Atmos. Sol. -Terr. Phys., 63(2-3), 155–169. https://doi.org/10.1016/s1364-6826(00)00138-3 |
Holdsworth, D. A., Reid, I. M., and Cervera, M. A. (2004). Buckland Park all-sky interferometric meteor radar. Radio Sci., 39(5), RS5009. https://doi.org/10.1029/2003rs003014 |
Huang, Y. Y., Zhang, S. D., Li, C. Y., Li, H. J., Huang, K. M., and Huang, C. M. (2017). Annual and interannual variations in global 6.5DWs from 20 to 110 km during 2002–2016 observed by TIMED/SABER. J. Geophys. Res.-Space Phys., 122(8), 8985–9002. https://doi.org/10.1002/2017ja023886 |
Jiang, G., Xiong, J., Wan, W., Ning, B., and Liu, L. (2008a). Observation of 6.5-day waves in the MLT region over Wuhan. J. Atmos. Sol. -Terr. Phys., 70(1), 41–48. https://doi.org/10.1016/j.jastp.2007.09.008 |
Jiang, G., Xu, J. Y., Xiong, J., Ma, R., Ning, B., Murayama, Y., Thorsen, D., Gurubaran, S., Vincent, R. A., … Franke, S. J. (2008b). A case study of the mesospheric 6.5-day wave observed by radar systems. J. Geophys. Res.-Atmos., 113(D16), D16111. https://doi.org/10.1029/2008jd009907 |
Lean, J. (1991). Variations in the sun’s radiative output. Rev. Geophys., 29(4), 505–535. https://doi.org/10.1029/91rg01895 |
Li, G. Z., Ning, B. Q., Li, A., Yang, S. P., Zhao, X. K., Zhao, B. Q., and Wan, W. X. (2018). First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations. Earth Planet. Phys., 2(2), 15–21. https://doi.org/10.26464/epp2018002 |
Lieberman, R. S., Riggin, D. M., Franke, S. J., Manson, A. H., Meek, C., Nakamura, T., Tsuda, T., Vincent, R. A., and Reid, I. (2003). The 6.5-day wave in the mesosphere and lower thermosphere: Evidence for baroclinic/barotropic instability. J. Geophys. Res.-Atmos., 108(D20), 4640. https://doi.org/10.1029/2002jd003349 |
Liu, H. L., Talaat, E. R., Roble, R. G., Lieberman, R. S., Riggin, D. M., and Yee, J. H. (2004). The 6.5-day wave and its seasonal variability in the middle and upper atmosphere. J. Geophys. Res.-Atmos., 109(D21), D21112. https://doi.org/10.1029/2004jd004795 |
Liu, H. L., Wang, W., Richmond, A. D., and Roble, R. G. (2010). Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res.-Space Phys., 115(A6), A00G01. https://doi.org/10.1029/2009ja015188 |
Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39(2), 447–462. https://doi.org/10.1007/bf00648343 |
Meyer, C. K., and Forbes, J. M. (1997). A 6.5-day westward propagating planetary wave: Origin and characteristics. J. Geophys. Res.-Atmos., 102(D22), 26173–26178. https://doi.org/10.1029/97jd01464 |
Miyoshi, Y., and Hirooka, T. (1999). A numerical experiment of excitation of the 5-day wave by a GCM. J. Atmos. Sci., 56(11), 1698–1707. https://doi.org/10.1175/1520-0469(1999)056<1698:Aneoeo>2.0.Co;2 |
Miyoshi, Y., and Hirooka, T. (2003). Quasi-biennial variation of the 5-day wave in the stratosphere. J. Geophys. Res.-Atmos., 108(D19), 4620. https://doi.org/10.1029/2002jd003145 |
Riggin, D. M., Liu, H. L., Lieberman, R. S., Roble, R. G., Russell Ⅲ, J. M., Mertens, C. J., Mlynczak, M. G., Pancheva, D., Franke, S. J., … Vincent, R. A. (2006). Observations of the 5-day wave in the mesosphere and lower thermosphere. J. Atmos. Sol. -Terr. Phys., 68(3-5), 323–339. https://doi.org/10.1016/j.jastp.2005.05.010 |
Salby, M. L. (1981). Rossby normal modes in nonuniform background configurations. Part Ⅱ. Equinox and solstice conditions. J. Atmos. Sci., 38(9), 1827–1840. https://doi.org/10.1175/1520-0469(1981)038<1827:Rnminb>2.0.Co;2 |
Salby, M. L. (1984). Survey of planetary-scale traveling waves: the state of theory and observations. Rev. Geophys., 22(2), 209–236. https://doi.org/10.1029/RG022i002p00209 |
Scargle, J. D. (1982). Studies in astronomical time series analysis. Ⅱ. statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263(2), 835–853. https://doi.org/10.1086/160554 |
Talaat, E. R., Yee, J. H., and Zhu, X. (2001). Observations of the 6.5-day wave in the mesosphere and lower thermosphere. J. Geophys. Res.-Atmos., 106(D18), 20715–20723. https://doi.org/10.1029/2001jd900227 |
Wu, D. L., Hays, P. B., and Skinner, W. R. (1994). Observations of the 5-day wave in the mesosphere and lower thermosphere. Geophys. Res. Lett., 21(24), 2733–2736. https://doi.org/10.1029/94gl02660 |
Yi, W., Xue, X. H., Reid, I. M., Murphy, D. J., Hall, C. M., Tsutsumi, M., Ning, B. Q., Li, G. Z., Vincent, R. A., … Dou, X. K. (2019). Climatology of the mesopause relative density using a global distribution of meteor radars. Atmos. Chem. Phys., 19(11), 7567–7581. https://doi.org/10.5194/acp-19-7567-2019 |
[1] |
Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033 |
[2] |
Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013 |
[3] |
YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005 |
[4] |
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049 |
[5] |
YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050 |
[6] |
GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002 |
[7] |
Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022 |
[8] |
BaoZhu Zhou, XiangHui Xue, Wen Yi, HaiLun Ye, Jie Zeng, JinSong Chen, JianFei Wu, TingDi Chen, XianKang Dou, 2022: A comparison of MLT wind between meteor radar chain data and SD-WACCM results, Earth and Planetary Physics. doi: 10.26464/epp2022040 |
[9] |
Gang Lu, Liang Zhao, Ling Chen, Bo Wan, FuYuan Wu, 2021: Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?, Earth and Planetary Physics, 5, 123-140. doi: 10.26464/epp2021014 |
[10] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[11] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
[12] |
ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics, 4, 611-618. doi: 10.26464/epp2020069 |
[13] |
WeiLong Rao, WenKe Sun, 2022: Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data, Earth and Planetary Physics, 6, 228-240. doi: 10.26464/epp2022021 |
[14] |
Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006 |
[15] |
ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061 |
[16] |
Tao Tang, Jun Yang, QuanQi Shi, AnMin Tian, Shi-Chen Bai, Alexander William Degeling, SuiYan Fu, JingXian Liu, Tong Shao, ZeYuan Sun, 2020: The semiannual variation of transpolar arc incidence and its relationship to the Russell–McPherron effect, Earth and Planetary Physics, 4, 619-626. doi: 10.26464/epp2020066 |
[17] |
XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063 |
[18] |
Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030 |
[19] |
Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan, 2021: Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations, Earth and Planetary Physics, 5, 327-336. doi: 10.26464/epp2021040 |
[20] |
ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)