Citation:
Li, Z., Lu, Q. M., Wang, R. S., Gao, X. L., and Chen, H. Y. (2019).
In situ
evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection. Earth Planet. Phys., 3(6), 467–473.. http://doi.org/10.26464/epp2019048
2019, 3(6): 467-473. doi: 10.26464/epp2019048
In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection
1. | Chinese Academy Sciences Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026, China |
2. | Chinese Academy Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China |
In this paper, we analyze one reconnection event observed by the Magnetospheric Multiscale (MMS) mission at the earth’s magnetopause. In this event, the spacecraft crossed the reconnection current sheet from the magnetospheric side to the magnetosheath side, and whistler waves were observed on both the magnetospheric and magnetosheath sides. On the magnetospheric side, the whistler waves propagated quasi-parallel to the magnetic field and toward the X-line, while on the magnetosheath side they propagated almost anti-parallel to the magnetic field and away from the X-line. Associated with the enhancement of the whistler waves, we find that the fluxes of energetic electrons are concentrated around the pitch angle 90° when their energies are higher than the minimum energy that is necessary for the resonant interactions between the energetic electrons and whistler waves. This observation provides in situ observational evidence of resonant interactions between energetic electrons and whistler waves in the magnetic reconnection.
Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., Kuznetsova, M., Ma, Z. W., Bhattacharjee, A., … Pritchett, P. L. (2001). Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. Space Phys., 106(A3), 3715–3719. https://doi.org/10.1029/1999JA900449 |
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L. (2016). Magnetospheric multiscale overview and science objectives. Space Sci. Rev., 199(1-4), 5–21. https://doi.org/10.1007/s11214-015-0164-9 |
Burch, J. L., Ergun, R. E., Cassak, P. A., Webster, J. M., Torbert, R. B., Giles, B. L., Dorelli, J. C., Rager, A. C., Hwang, K. J., … Newman, D. L. (2018). Localized oscillatory energy conversion in magnetopause reconnection. Geophys. Res. Lett., 45(3), 1237–1245. https://doi.org/10.1002/2017GL076809 |
Cao, D., Fu, H. S., Cao, J. B., Wang, T. Y., Graham, D. B., Chen, Z. Z., Peng, F. Z., Huang, S. Y., Khotyaintsev, Y. V., … Burch, J. L. (2017). MMS observations of whistler waves in electron diffusion region. Geophys. Res. Lett., 44(9), 3954–3962. https://doi.org/10.1002/2017GL072703 |
Ciaravella, A., and Raymond, J. C. (2008). The current sheet associated with the 2003 November 4 coronal mass ejection: density, temperature, thickness, and line width. Astrophys. J., 686(2), 1372–1382. https://doi.org/10.1086/590655 |
Deng, X. H., and Matsumoto, H. (2001). Rapid magnetic reconnection in the Earth’s magnetosphere mediated by whistler waves. Nature, 410(6828), 557–560. https://doi.org/10.1038/35069018 |
Ergun, R. E., Tucker, S., Westfall, J., Goodrich, K. A., Malaspina, D. M., Summers, D., Wallace, J., Karlsson, M., Mack, J., … Rau, D. (2016). The Axial Double Probe and fields signal processing for the MMS mission. Space Sci. Rev., 199(1-4), 167–188. https://doi.org/10.1007/s11214-014-0115-x |
Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., Olshevsky, V., André, M., Cao, J. B., Huang, S. Y., Retinò, A., and Lapenta, G. (2015). How to find magnetic nulls and reconstruct field topology with MMS data?. J. Geophys. Res. Space Phys., 120(5), 3758–3782. https://doi.org/10.1002/2015JA021082 |
Fujimoto, K., and Sydora, R. D. (2008). Whistler waves associated with magnetic reconnection. Geophys. Res. Lett., 35(19), L19112. https://doi.org/10.1029/2008GL035201 |
Fujimoto, K. (2014). Wave activities in separatrix regions of magnetic reconnection. Geophys. Res. Lett., 41(8), 2721–2728. https://doi.org/10.1002/2014GL059893 |
Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., and André, M. (2016). Whistler emission in the separatrix regions of asymmetric magnetic reconnection. J. Geophys. Res. Space Phys., 121(3), 1934–1954. https://doi.org/10.1002/2015JA021239 |
Huang, S. Y., Fu, H. S., Yuan, Z. G., Vaivads, A., Khotyaintsev, Y. V., Retino, A., Zhou, M., Graham, D. B., Fujimoto, K., … Zhou, X. (2016). Two types of whistler waves in the hall reconnection region. J. Geophys. Res. Space Phys., 121(7), 6639–6646. https://doi.org/10.1002/2016JA022650 |
Huang, S. Y., Yuan, Z. G., Sahraoui, F., Fu, H. S., Pang, Y., Zhou, M., Fujimoto, K., Deng, X. H., Retinò, A., … Li, H. M. (2017). Occurrence rate of whistler waves in the magnetotail reconnection region. J. Geophys. Res. Space Phys., 122(7), 7188–7196. https://doi.org/10.1002/2016JA023670 |
Ji, H., Terry, S., Yamada, M., Kulsrud, R., Kuritsyn, A., and Ren Y. (2004). Electromagnetic fluctuations during fast reconnection in a laboratory plasma. Phys. Rev. Lett., 92, 115001. https://doi.org/10.1103/PhysRevLett.92.115001 |
Kennel, C. F., and Petschek, H. E. (1966). Limit on stably trapped particle fluxes. J. Geophys. Res., 71(1), 1–28. https://doi.org/10.1029/JZ071i001p00001 |
Le Contel, O., Leroy, P., Roux, A., Coillot, C., Alison, D., Bouabdellah, A., Mirioni, L., Meslier, L., Galic, A., … de la Porte, B. (2016). The search-coil magnetometer for MMS. Space Sci. Rev., 199(1-4), 257–282. https://doi.org/10.1007/s11214-014-0096-9 |
Li, J., Bortnik, J., An, X., Li, W., Russell, C. T., Zhou, M., and Le Contel, O. (2018). Local excitation of whistler mode waves and associated Langmuir waves at dayside reconnection regions. Geophys. Res. Lett., 45(17), 8793–8802. https://doi.org/10.1029/2018GL078287 |
Lindqvist, P. A., Olsson, G., Torbert, R. B., King, B., Granoff, M., Rau, D., Needell, G., Turco, S., Dors, I., … Tucker, S. (2016). The spin-plane double probe electric field instrument for MMS. Space Sci. Rev., 199(1-4), 137–165. https://doi.org/10.1007/s11214-014-0116-9 |
Lu, Q. M., Huang, C., Xie, J. L., Wang, R. S., Wu, M. Y., Vaivads, A., and Wang, S. (2010). Features of separatrix regions in magnetic reconnection: Comparison of 2-D particle-in-cell simulations and Cluster observations. J. Geophys. Res.: Space Phys., 115(A11), A11208. https://doi.org/10.1029/2010JA015713 |
Lu, S., Angelopoulos, V., Artemyev, A. V., Pritchett, P. L., Runov, A., Tenerani, A., Shi., C., Velli, M. (2019). Turbulent and particle acceleration in collisionless magnetic reconnection: Effects of temperature inhomogeneity across pre-connection current sheet. Astrophys. J., 878, 109. https://doi.org/10.3847/1538-4357/ab1f6b |
Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto T., Avanov L., Barrie A., … Zeuch, M. (2016). Fast plasma investigation for Magnetospheric Multiscale. Space Sci. Rev., 199(1-4), 331–406. https://doi.org/10.1007/s11214-016-0245-4 |
Priest, E., and Forbes, T. (2000). Magnetic Reconnection: MHD Theory and Applications (pp. 1-45). Cambridge, New York: Cambridge Univ. Press.222 |
Russell, C. T., and McPherron, R. L. (1973). The magnetotail and substorms. Space Sci. Rev., 15(2-3), 205–266. https://doi.org/10.1007/BF00169321 |
Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., … Richter, I. (2016). The magnetospheric multiscale magnetometers. Space Sci. Rev., 199(1-4), 189–256. https://doi.org/10.1007/s11214-014-0057-3 |
Samson, J. C., and Olson, J. V. (1980). Some comments on the descriptions of the polarization states of waves. Geophys. J. R. Astron. Soc., 61(1), 115–129. https://doi.org/10.1111/j.1365-246X.1980.tb04308.x |
Sonnerup, B. U. Ö., and Scheible, M. (1998). Minimum and maximum variance analysis. In G. Paschmann, et al. (Eds.), Analysis Methods for Multi-Spacecraft Data (pp. 185-215). Bern, Switzerland: European Space Agency.222 |
Tang, X. W., Cattell, C., Dombeck, J., Dai, L., Wilson, L. B., Breneman, A., and Hupach, A. (2013). THEMIS observations of the magnetopause electron diffusion region: Large amplitude waves and heated electrons. Geophys. Res. Lett., 40(12), 2884–2890. https://doi.org/10.1002/grl.50565 |
Torbert, R. B., Russell, C. T., Magnes, W., Ergun, R. E., Lindqvist, P. A., LeContel, O., Vaith, H., Macri, J., Myers, S., … Lappalainen, K. (2016). The fields instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci. Rev., 199(1-4), 105–135. https://doi.org/10.1007/s11214-014-0109-8 |
Treumann, R. A., and Baumjohann, W. (2015). Spontaneous magnetic reconnection. Collisionless reconnection and its potential astrophysical relevance. Astron. Astrophys. Rev., 23(1), 4. https://doi.org/10.1007/s00159-015-0087-1 |
Vasyliunas, V. M. (1975). Theoretical models of magnetic field line merging. Rev. Geophys., 13, 303–336. https://doi.org/10.1029/RG013i001p00303 |
Wei, X. H., Cao, J. B., Zhou, G. C., Santolík, O., Rème, H., Dandouras, I., Cornilleau-Wehrlin, N., Lucek, E., Carr, C. M., and Fazakerley A. (2007). Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earths magnetotail. J. Geophys. Res. Space Phys., 112, A10225. https://doi.org/10.1029/2006JA011771 |
Wilder, F. D., Ergun, R. E., Goodrich, K. A., Goldman, M. V., Newman, D. L., Malaspina, D. M., Jaynes, A. N., Schwartz, S. J., Trattner, K. J., … Holmes J. C. (2016). Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission. Geophys. Res. Lett., 43(12), 5909–5917. https://doi.org/10.1002/2016GL069473 |
Yamada, M., Kulsrud, R., and Ji, H. T. (2010). Magnetic reconnection. Rev. Mod. Phys., 82(1), 603–664. https://doi.org/10.1103/RevModPhys.82.603 |
Zhou, M., Li, H., Deng, X., Huang, S., Pang, Y., Yuan, Z., Xu, X., and Tang R. (2014). Characteristic distribution and possible roles of waves around the lower hybrid frequency in the magnetotail reconnection region. J. Geophys. Res. Space Phys., 119, 8228–8242. https://doi.org/10.1002/2014JA019978 |
[1] |
JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002 |
[2] |
YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028 |
[3] |
HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019 |
[4] |
Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022 |
[5] |
YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015 |
[6] |
YuMing Wang, RuoBing Zheng, XianZhe Jia, ChuanBing Wang, Shui Wang, V. Krupar, 2022: Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”, Earth and Planetary Physics, 6, 13-17. doi: 10.26464/epp2022019 |
[7] |
ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007 |
[8] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[9] |
ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037 |
[10] |
Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020 |
[11] |
BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001 |
[12] |
BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003 |
[13] |
ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033 |
[14] |
Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032 |
[15] |
QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036 |
[16] |
YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052 |
[17] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[18] |
YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021 |
[19] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[20] |
ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)