Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Hu, S.-F., and Wei, Y. (2019). Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research. Earth Planet. Phys., 3(5), 459–466..

2019, 3(5): 459-466. doi: 10.26464/epp2019046


Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: Yong Wei,

Received Date: 2019-07-30
Web Publishing Date: 2019-09-24

The Chinese Academy of Sciences and its affiliated institutes and universities, responding to ever-increasing needs of China’s space explorations and exploitations in recent years, have taken a series of initiatives and conducted related activities to support Chinese planetary science research.

Key words: Chinese Academy of Sciences, planetary science, space explorations and exploitations, capacity-building

American Association for the Advancement of Science (AAAS). (2012). Science in the Chinese academy of sciences. Science, 337(6098), 1123.

Burns, J. A. (2010). The four hundred years of planetary science since Galileo and Kepler. Nature, 466(7306), 575–584.

Biever, C. (2016). Science stars of China. Nature, 534(7608), 456–461.

Burrows, W. E. (1990). Exploring Space: Voyages in the Solar System and Beyond. New York: Random House.222

Coleman, P. J., and Hussein, H. J. (2000). The universities space research association and government-industry-university partnerships. In Proceedings of 2000 IEEE Aerospace Conference (pp. 551-559). Big Sky, MT, USA: IEEE.

Cruikshank, D. P., and Chamberlain, J. W. (1999). The beginnings of the division for flanetary sciences of the American Astronomical Society. In D. H. DeVorkin (Ed.),The American Astronomical Society’s First Century. pp. 252-268.

Crawford, I. A. (2016). The long-term scientific benefits of a space economy. Space Policy, 37, 58–61.

DAMPE Collaboration. (2017). Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature, 552(7683), 63–66.

Hui, H.J., and Qin, L. P. (2019). Planetary chemistry in China. Bull. Chin. Acad. Sci. (in Chinese) , 34(7), 769–775.

International Space Exploration Coordination Group (ISECG). (2013). Benefits stemming from space exploration.

Li, X. Y., Lin, W., Xiao, Z.Y., Tang, H., Zhao, Y. Y., Zeng, X.J. (2019). Planetary geology: " extraterrestrial” model of geology. Bull. Chin. Acad. Sci. (in Chinese) , 34(7), 776–784.

Li, C. L., Wang, C., Wei, Y., and Lin, Y. T. (2019). China’s present and future lunar exploration program. Science, 365(6450), 238–239.

Liao, S. K., Cai, W. Q., Liu, W. Y., Zhang, L., Li, Y., Ren, J. G., Yin, J., Shen, Q., Cao, Y., … Pan, J. Y. (2017). Satellite-to-ground quantum key distribution. Nature, 549(7670), 43–47.

National Research Council. (2011). Vision and Voyages for Planetary Science in the Decade 2013-2022. Washington D C: National Academies Press.

Normile, D. (2016). Red star rising. Science, 353(6297), 342–345.

Qiu, J. (2017a). China’s quest to become a space science superpower. Nature, 547(7664), 394–396.

Qiu J. (2017b). Great strides of China's space programmes. National Science Review, 4(2), 264–268.

Ren, J. G., Xu, P., Yong, H. L., Zhang, L., Liao, S. K., Yin, J., Liu, W. Y., Cai, W. Q., Yang, M., … Pan, J. W. (2017). Ground-to-satellite quantum teleportation. Nature, 549(7670), 70–73.

Rong, Z. J., Cui, J., He, F., Kong, D. L., Zhang, J. H., Zou, H., Li, L. G., Yao, Z. H., Wei, Y., and Wan, W. X. (2019). Status and prospect for Chinese planetary physics. Bull. Chin. Acad. Sci. (in Chinese) , 34(7), 760–768.

Ruley, J. D. (2013). Homer Newell and the origins of planetary science in the United States. In R. D. Launius (Ed.), Exploring the Solar System: The History and Science of Planetary Exploration (pp. 25-44). New York: Palgrave Macmillan.222

Shirley, J. H., and Fairbridge, R. W. (1997). Encyclopedia of Planetary Sciences. Dordrecht: Springer.222

Strick, J. E. (1973). Creating a cosmic discipline: the crystallization and consolidation of exobiology, 1957–1973. J. Hist. Biol., 37(1), 131–180.

Tatarewicz, J. T. (1990). Space Technology and Planetary Astronomy. Bloomington: Indiana University Press.222

Wan, W. X. (2017). Earth science, planetary vision—A foreword to Earth and Planetary Physics (EPP). Earth Planet. Phys., 1(1), 1.

Wan, W. X., Wei, Y., Guo, Z. T., Xu, Y. G., and Pan, Y. X. (2019). Toward a power of planetary science from a giant of deep space exploration. Bull. Chin. Acad. Sci. (in Chinese) , 34(7), 748–755.

Wei, Y., Yao, Z., Wan, W. (2018). China’s roadmap for planetary exploration. Nature Astronomy, 2(5), 346–348.

Wei, Y., and Zhu, R. X. (2019). Planetary science: frontier of science and national strategy. Bull. Chin. Acad. Sci. (in Chinese) , 34(7), 756–759.

Wu, F. Y., Wei, Y., Song, Y. H., Liu, Y., Li, T. S., Sun, W. K., Liu, J. F., and Wang, Y. F. (2019). From fusion of research and teaching to leading of science—strategy to build planetary science program with Chinese characteristics. Bull. Chin. Acad. Sci. (in Chinese) , 34(7), 741–747.

Wu, J., Fan, Q. L., and Cao, S. (2016). Progress of strategic priority program on space science. Chin. J. Space Sci., 36(5), 600–605.

Wu, J., and Bonnet, R. (2017). Maximize the impacts of space science. Nature, 551(7681), 435–436.

Wu, J., and Wang, C. (2018). Progress of strategic priority program on space science. Chin. J. Space Sci., 38(5), 585–590.

Xin, H. (2011). Chinese Academy takes space under its wing. Science, 332(6032), 904.

Yin, J., Cao, Y., Li, Y. H., Liao, S. K., Zhang, L., Ren, J. G., Cai, W. Q., Liu, W. Y., Li, B., … Pan, J. W. (2017). Satellite-based entanglement distribution over 1200 kilometers. Science, 356(6343), 1140–1144.


WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029


LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011


TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026


Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042


QingHua Huang, 2021: Annual Meeting minutes of the Chinese Geoscience Union, 2020, Earth and Planetary Physics, 5, 121-121. doi: 10.26464/epp2021013


WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052


YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005


YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021


SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012


ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011


LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045


Xiao-Dong Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, Y. Futaana, 2022: Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications, Earth and Planetary Physics, 6, 42-51. doi: 10.26464/epp2022003


GuangWen Wang, HaiYan Wang, HongQiang Li, ZhanWu Lu, WenHui Li, TaiRan Xu, 2022: Application of active-source surface waves in urban underground space detection: A case study of Rongcheng County, Hebei, China, Earth and Planetary Physics, 6, 385-398. doi: 10.26464/epp2022039


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research

Su-Fang Hu, Yong Wei